Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T05:48:41.395Z Has data issue: false hasContentIssue false

Formation of Insulating Oxide Films with Hydrolysis Reactions of Alkoxide Precursors in Supercritical Fluid CO2: Chemistry, Morphology, Characterization and Film Thickness

Published online by Cambridge University Press:  19 April 2016

Joanna S. Wang*
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright-Patterson AFB, OH 45433-7707, USA
Chien. M. Wai
Affiliation:
Department of Chemistry, University of Idaho, Moscow, ID 83844, USA
Gail J. Brown
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright-Patterson AFB, OH 45433-7707, USA
Scott D. Apt
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright-Patterson AFB, OH 45433-7707, USA
Howard E. Smith
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright-Patterson AFB, OH 45433-7707, USA
Laraba P. Kendig
Affiliation:
Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright-Patterson AFB, OH 45433-7707, USA
*
Get access

Abstract

Insulating silicon dioxide (SiO2) films can be produced by hydrolysis of metal alkoxide tetraethylorthosilicate (TEOS) in the presence of an acid catalyst in supercritical fluid CO2 (sc-CO2). In this study, SiO2 films are formed on different substrates using TEOS as a source of silicon, and acetic acid (HAc) as a catalyst. Water required for the hydrolysis reaction is from in situ generation of esterification and condensation reactions involving HAc and the alcohol produced. The acid catalyzed deposition reaction actually starts at room temperature but produces decent films in sc-CO2 at moderately high temperatures (e.g. 50 °C). Supercritical fluid CO2 is known to have near zero surface tension and provides an ideal medium for fabrication of SiO2 films. Formation of SiO2 films via hydrolysis reaction in sc-CO2 is more rapid compared to the traditional hydrolysis reaction at room temperature. In general, metal alkoxide hydrolysis reactions carried out in a closed sc-CO2 system is not affected by moisture in air compared with traditional open-air hydrolysis systems. Using sc-CO2 as a reaction medium can eliminate undesirable organic solvents utilized in traditional alkoxide hydrolysis reactions.

X-ray diffraction (XRD) and electron diffraction (ED) measurements demonstrated that the SiO2 films produced are amorphous. Energy dispersive spectroscopy (EDS), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) spectroscopy show elemental compositions of the films formed on the substrate surfaces to be SiO2. Film thickness formation by controlling the amount of the catalyst is discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Perucchi, A., Baldassarre, L., Postorino, P. and Lupi, S., J. Phys. : Condensed Matter, 21, 323202 (2009).Google Scholar
Izumi, M., Murakami, Y., Konishi, Y., Manako, T., Kawasaki, M. and Tokura, Y., Phys. Rev. B 60, 1211 (1999).Google Scholar
Gangishetty, M. K., Scott, R. W. J. and Kelly, Timothy L., Langmuir 30, 14352 (2014).Google Scholar
Takenaka, S., Matsumori, H., Nakagawa, K., Matsune, H., Tanabe, E. and Kishida, M., J. Phys. Chem. C 111, 15133 (2007).CrossRefGoogle Scholar
Chen, H., Ming, T., Zhang, S., Jin, Z., Yang, B. and Wang, J., ACS Nano 5, 4865 (2011).Google Scholar
Park, M. H., Jang, Y. J., Sung-Suh, H. M. and Sung, M. M., Langmuir 20, 2257 (2004).Google Scholar
Racke, D.A., Kelly, L.L., Kim, H., Schulz, P., Sigdel, A., Berry, J.J., Graham, S., Nordlund, D. and Monti, O.L.A., J. Phys. Chem. Lett. 6, 1935, (2015).CrossRefGoogle Scholar
Hozumi, A., Kojima, S., Nagano, S., Seki, T., Shirahata, N. and Kameyama, T., Langmuir 23, 3265 (2007).CrossRefGoogle Scholar
Chen, Z., Li, W., Li, R., Zhang, Y., Xu, G. and Cheng, H., Langmuir 29, 13836 (2013).Google Scholar
Xu, K. and Heath, J. R., Nano Lett. 8, 3845 (2008).CrossRefGoogle Scholar
Wang, J. S., Wai, C. M., Brown, G. J. and Apt, S. D.. RSC Adv. 5, 74753 (2015).Google Scholar
Stouwdam, J. W., Shan, J. N. and van Veggel, F.C.J.M., J. Phys. Chem. C 111, 1086 ((2007).Google Scholar
Ihly, R., Tolentino, J., Liu, Y., Gibbs, M. and Law, M., ACS Nano 5, 8175 (2011).Google Scholar
Nanu, M., Schoonman, J. and Goossens, A., Adv. Mater. 16, 453 (2004).Google Scholar
Pourret, A., Sionnest, P.G. and Elan, J.W., Adv. Mater. 21, 232 (2001).Google Scholar
Buckley, A. M. and Greenblatt, M., J. Chem. Edu., 71, 599 (1994).Google Scholar
Karmakar, B., De, G. and Ganguli, D., J. Non-Cryst Solids 272, 119 (2000).Google Scholar
Jada, S. S., J. Am. Ceram. Soc., 70, C-298 (1987).Google Scholar
Sabirzyanov, A. N., Il’in, A. P., Akhunov, A. P. and Gumerov, F. M., High Temperature, 40, 203 (2002).CrossRefGoogle Scholar
Pope, E. J. A. and Mackenzie, J. D., J. Non-Cryst. Solids 87, 185 (1986).CrossRefGoogle Scholar
Charpentier, P. A., Li, X. S. and Sui, R. H., Langmuir 25, 3748 (2009).CrossRefGoogle Scholar