Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T17:04:03.277Z Has data issue: false hasContentIssue false

Fluorescence Studies of Fe3O4-Au Hybrid Nanoparticles

Published online by Cambridge University Press:  02 January 2018

Raheeb Alsaidi
Affiliation:
Department of Physics, St. John’s University, 8000 Utopia Pkwy, Jamaica, NY11439-9000, USA
Blawal Chaudhry
Affiliation:
Department of Physics, St. John’s University, 8000 Utopia Pkwy, Jamaica, NY11439-9000, USA
Juhayer S. Uddin
Affiliation:
Department of Physics, St. John’s University, 8000 Utopia Pkwy, Jamaica, NY11439-9000, USA
Andrew Nunez
Affiliation:
Department of Physics, St. John’s University, 8000 Utopia Pkwy, Jamaica, NY11439-9000, USA
Arkadiusz Baginski
Affiliation:
Department of Physics, St. John’s University, 8000 Utopia Pkwy, Jamaica, NY11439-9000, USA
Sedariest Hammond
Affiliation:
Department of Physics, St. John’s University, 8000 Utopia Pkwy, Jamaica, NY11439-9000, USA
Elmustapha Feddi
Affiliation:
LaMCScI, Group of Optoelectronic of Semiconductors and Nanomaterials, ENSET, Mohammed V University in Rabat, Morocco
Mostafa Sadoqi
Affiliation:
Department of Physics, St. John’s University, 8000 Utopia Pkwy, Jamaica, NY11439-9000, USA
Gen Long*
Affiliation:
Department of Physics, St. John’s University, 8000 Utopia Pkwy, Jamaica, NY11439-9000, USA
*
*Corresponding author, E-mail: [email protected]
Get access

Abstract

Magnetic and fluorescent nanoparticles are widely studied in biomedical research such as drug delivery, imaging, etc. Hybrid nanoparticles combining both magnetic and fluorescent properties are particularly interesting. In this manuscript, we report a recent study on Fe3O4-Au hybrid nanoparticles displaying fluorescence. Fe3O4-Au hybrid nanoparticles were synthesized via solution phase chemical reaction in inert N2 atmosphere. The synthesized hybrid nanoparticles were characterized by UV-Vis-NIR spectroscopy and fluorescence spectroscopy, XRD, TEM, etc. The optimal synthesis condition yields stable, uniform hybrid nanoparticles without impurities. The correlation between fluorescent life- time and sizes, compositions, shapes of hybrid nanoparticles was discussed. Biomedical applications of synthesized hybrid nanoparticles, utilizing their fluorescent and magnetic properties, are still undergoing.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brus, L. E.., J. Chem. Phys. 80, 4403, (1984).CrossRefGoogle Scholar
Murray, C. B., Norris, D. J., Bawendi, M. G., J. Am. Chem. Soc., 115 (19), 87068715, (1993).CrossRefGoogle Scholar
Sun, S. and Zeng, H., J. Am. Chem. Soc., 124, 82048205, (2002).CrossRefGoogle Scholar
Sun, S., Zeng, H., Robinson, D. B., Raoux, S., Rice, P. M., Wang, S. X., and Li, G.., J. Am. Chem. Soc., 126, 273279, (2004).CrossRefGoogle Scholar
Park, J.H., Lim, Y.T., Park, O. O., Kim, J. K., Yu, J.W., and Kim, Y. C., Chem. Mater., 16 (4), 688692, (2004).CrossRefGoogle Scholar
Grancharov, S. G., Zeng, H., Sun, S., Wang, S.X., O’Brien, S., Murray, C. B., Kirtley, J. R., and Held, G. A., J. Phys. Chem. B, 109 (26), 1303013035, (2005).CrossRefGoogle Scholar
Wang, L., Wang, L., Luo, J., Fan, Q., Suzuki, M., Suzuki, I. S., Engelhard, M. H., Lin, Y., Kim, N., Wang, J.Q., and Zhong, C.-J., J. Phys. Chem. B, 109 (46), 2159321601, (2005).CrossRefGoogle Scholar
Yu, H., Chen, M., Rice, P. M., Wang, S. X., White, R. L., and Sun, S., Nano. Lett., Vol. 5, No. 2, (2005).Google Scholar
Shi, W., Zeng, H., Sahoo, Y., Ohulchanskyy, T. Y., Ding, Y., Wang, Z. L., Swihart, M., and Prasad, P. N., Nano Lett., Vol. 6, No. 4 (2006).Google Scholar
Talapin, D. V. and Murray, C. B., Science, 310, 86, (2005).CrossRefGoogle Scholar
Lee, J.-S., Shevchenko, E. V., and Talapin, D. V., J. Am. Chem. Soc., 130, 96739675, (2008).CrossRefGoogle Scholar
Catchpole, K.R. and Polman, A., Optics Express,16, 26, 2179321800, (2008).CrossRefGoogle Scholar
Atwater, H. A., Polman, A., Nat. Mater., 9, 205213, (2010).CrossRefGoogle Scholar
Long, G., Zhang, H., Li, D., Sabirianov, R., Zhang, Z., Zeng, H., Appl. Phys. Lett, 99 (20), 202103, (2011).CrossRefGoogle Scholar
Kawawaki, T., Tatsuma, T., Phys.Chem. Chem. Phys., 15, 2024720251, (2013).CrossRefGoogle Scholar
Long, G., Barman, B., Delikanli, S., Tsai, Y. T., Zhang, P., Petrou, A., and Zeng, H., Appl. Phys. Lett., 101, 062410 (2012).CrossRefGoogle Scholar
Long, G., Ching, L., Sadoqi, M., Xu, H., Applied Physics A 122(4), 15, (2016).Google Scholar
Wu, W., Wu, Z., Yu, T., Jiang, C. and Kim, W-S, Sci. Technol. Adv. Mater. 16, 023501, (2015).CrossRefGoogle Scholar
Sahoo, Y., Goodarzi, A., Swihart, M. T., Ohulchanskyy, T. Y., Kaur, N., Furlani, E. P., and Prasad, P. N., J. Phys. Chem. B, 109 (9), 38793885, (2005).CrossRefGoogle Scholar
Zhang, K., Mei, Q., Guan, G., Liu, B., Wang, S., and Zhang, Z., Anal. Chem., 82 (22), 95799586, (2010).CrossRefGoogle Scholar