Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T07:38:59.975Z Has data issue: false hasContentIssue false

First-Principles Study of the Calcium Insertion in Layered and Non-Layered Phases of Vanadia

Published online by Cambridge University Press:  28 May 2018

Daniel Koch*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore; email: [email protected]
Sergei Manzhos
Affiliation:
Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore; email: [email protected]
*
Get access

Abstract

We investigate the insertion energetics of Ca at low concentrations in four promising vanadium oxide phases (α and δ vanadium pentoxide (V2O5) polymorphs as well as rutile- (R) and bronze-type (B) vanadium dioxide (VO2)) using density functional theory (DFT). We find α-V2O5 to be the most suitable material for an application as cathode, driven by a stable coordinative environment, while VO2(R) does not exhibit a stable low-concentration CaxVO2 phase due to severe distortions of the host lattice due to the large calcium ion. The results provide insight into the possibility of employing these phases as active cathode materials of Ca-ion batteries.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Whittingham, M. S., Siu, C. and Ding, J., Acc. Chem. Res. 51 (2), 258264 (2018).CrossRefGoogle Scholar
Amatucci, G. G., Badway, F., Singhal, A., Beaudoin, B., Skandan, G., Bowmer, T., Plitz, I., Pereira, N., Chapman, T. and Jaworski, R., J. Electrochem. Soc. 148 (8), A940A950 (2001).CrossRefGoogle Scholar
Pecquenard, B., Gourier, D. and Baffier, N., Solid State Ionics 78 (3), 287303 (1995).CrossRefGoogle Scholar
Sai Gautam, G., Canepa, P., Abdellahi, A., Urban, A., Malik, R. and Ceder, G., Chem. Mater. 27 (10), 37333742 (2015).CrossRefGoogle Scholar
Shannon, R., Acta Crystallogr., Sect. A 32 (5), 751767 (1976).CrossRefGoogle Scholar
Gautam, G. S., Canepa, P., Malik, R., Liu, M., Persson, K. and Ceder, G., Chem. Commun. 51 (71), 1361913622 (2015).CrossRefGoogle Scholar
Koch, D., Kulish, V. V. and Manzhos, S., MRS Commun. 7 (4), 819825 (2017).CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B: Condens. Matter 54 (16), 1116911186 (1996).CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B: Condens. Matter 50 (24), 1795317979 (1994).CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B: Condens. Matter 59 (3), 17581775 (1999).CrossRefGoogle Scholar
Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., Zhou, X. and Burke, K., Phys. Rev. Lett. 100 (13), 136406 (2008).CrossRefGoogle Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B: Condens. Matter 13 (12), 51885192 (1976).CrossRefGoogle Scholar
Blöchl, P. E., Jepsen, O. and Andersen, O. K., Phys. Rev. B: Condens. Matter 49 (23), 1622316233 (1994).CrossRefGoogle Scholar
Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. and Sutton, A. P., Phys. Rev. B: Condens. Matter 57 (3), 15051509 (1998).CrossRefGoogle Scholar
Grimme, S., J. Comput Chem. 27 (15), 17871799 (2006).CrossRefGoogle Scholar
Bučko, T., Hafner, J., Lebègue, S. and Ángyán, J. G, J. Phys. Chem. A 114 (43), 1181411824 (2010).CrossRefGoogle Scholar
Sk, M. A. and Manzhos, S., J. Power Sources 324, 572581 (2016).CrossRefGoogle Scholar
Henkelman, G., Arnaldsson, A. and Jónsson, H., Comput. Mater. Sci. 36 (3), 354360 (2006).CrossRefGoogle Scholar
Sanville, E., Kenny Steven, D., Smith, R. and Henkelman, G., J. Comput. Chem. 28 (5), 899908 (2007).CrossRefGoogle Scholar
Tang, W., Sanville, E. and Henkelman, G., J. Phys.: Condens. Matter 21 (8), 084204 (2009).Google Scholar
Yu, M. and Trinkle, D. R., J. Chem. Phys. 134 (6), 064111 (2011).CrossRefGoogle Scholar
Momma, K. and Izumi, F., J. Appl. Crystallogr. 44 (6), 12721276 (2011).CrossRefGoogle Scholar
Enjalbert, R. and Galy, J., Acta Crystallogr., Sect. C 42 (11), 14671469 (1986).CrossRefGoogle Scholar
Leroux, C., Nihoul, G. and Van Tendeloo, G., Phys. Rev. B: Condens. Matter 57 (9), 51115121 (1998).CrossRefGoogle Scholar
Kulish, V. and Manzhos, S., RSC Adv. 7 (30), 1864318649 (2017).CrossRefGoogle Scholar
Smolinski, H., Gros, C., Weber, W., Peuchert, U., Roth, G., Weiden, M. and Geibel, C., Phys. Rev. Lett. 80 (23), 51645167 (1998).CrossRefGoogle Scholar
Xing, M., Hou-Gang, F., Zu-Fei, H., Fang, H., Chun-Zhong, W. and Gang, C., J. Phys.: Condens. Matter 20 (15), 155203 (2008).Google Scholar
Yaresko, A. N., Antonov, V. N., Eschrig, H., Thalmeier, P. and Fulde, P., Phys. Rev. B: Condens. Matter 62 (23), 1553815546 (2000).CrossRefGoogle Scholar