Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T18:40:16.012Z Has data issue: false hasContentIssue false

Fabrication of Thin Metal-Organic Framework MOF Films on Metal-Ion-crosslinked GO-modified Supports

Published online by Cambridge University Press:  27 June 2017

Julius Choi
Affiliation:
Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843-2117, United States.
Hyuk Taek Kwon
Affiliation:
Artie McFerrin Department of Chemical Engineering and Texas A&M University, College Station, TX 77843-3122, United States.
Hae-Kwon Jeong*
Affiliation:
Artie McFerrin Department of Chemical Engineering and Texas A&M University, College Station, TX 77843-3122, United States. Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3122, United States.
*
*Corresponding author, email address: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Thin films of metal-organic frameworks (MOFs) have shown promising for applications such as gas separation, gas storage, optoelectronics or sensing. However, synthesis of polycrystalline MOF films and membranes depends largely on the surface properties of supports, limiting the availability of common supports. It is, therefore, highly desirable to develop ways to modify the surface properties of common supports for the preferred heterogeneous nucleation of the MOFs. Here, we demonstrated that graphene-oxide (GO) can be exploited to readily modify the surface properties of common supports, thereby leading to well inter-grown polycrystalline MOF films. A prototypical zeolitic-imidazolate framework ZIF-8 was chosen as a model MOF system. The stabilization of GO layers with divalent metal ions was found a key step to synthesize well inter-grown ZIF-8 films. The effect of divalent metal ions on the stability of GO layers and the quality of the resulting ZIF-8 films were systematically investigated. Finally, the single gas permeation behaviors of the ZIF-8 films grown on GO-modified supports were tested.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Qiu, S., Xue, M. and Zhu, G., Chemical Society Reviews 43 (16), 61166140 (2014).CrossRefGoogle Scholar
Yao, J. and Wang, H., Chemical Society Reviews 43 (13), 44704493 (2014).Google Scholar
Shekhah, O., Liu, J., Fischer, R. A. and Woll, C., Chemical Society Reviews 40 (2), 10811106 (2011).Google Scholar
Bradshaw, D., Garai, A. and Huo, J., Chemical Society Reviews 41 (6), 23442381 (2012).Google Scholar
Ranjan, R. and Tsapatsis, M., Chemistry of Materials 21 (20), 49204924 (2009).Google Scholar
Darder, M. d. M., Salehinia, S., Parra, J. B., Herrero-Martinez, J. M., Svec, F., Cerdà, V., Turnes Palomino, G. and Maya, F., ACS Applied Materials & Interfaces 9 (2), 17281736 (2017).Google Scholar
Zhang, Y., Feng, X., Yuan, S., Zhou, J. and Wang, B., Inorganic Chemistry Frontiers 3 (7), 896909 (2016).CrossRefGoogle Scholar
G. Eda and M. Chhowalla, , Advanced Materials 22 (22), 2392-2415 (2010).Google Scholar
Suk, J. W., Piner, R. D., An, J. and Ruoff, R. S., ACS Nano 4 (11), 65576564 (2010).Google Scholar
Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T. and Ruoff, R. S., Nature 448 (7152), 457-460 (2007).CrossRefGoogle Scholar
Ahmed, I. and Jhung, S. H., Materials Today 17 (3), 136146 (2014).Google Scholar
Hu, Y., Wei, J., Liang, Y., Zhang, H., Zhang, X., Shen, W. and Wang, H., Angewandte Chemie International Edition 55 (6), 20482052 (2016).Google Scholar
Kwon, H. T. and Jeong, H.-K., Journal of the American Chemical Society 135 (29), 1076310768 (2013).Google Scholar
Pan, Y., Li, T., Lestari, G. and Lai, Z., Journal of Membrane Science 390–391 (0), 9398 (2012).Google Scholar
Shah, M., Kwon, H. T., Tran, V., Sachdeva, S. and Jeong, H.-K., Microporous and Mesoporous Materials 165, 6369 (2013).Google Scholar
Paredes, J. I., Villar-Rodil, S., Martínez-Alonso, A. and Tascón, J. M. D., Langmuir 24 (19), 1056010564 (2008).Google Scholar
Li, D., Muller, M. B., Gilje, S., Kaner, R. B. and Wallace, G. G., Nat Nano 3 (2), 101105 (2008).Google Scholar
Huang, H., Ying, Y. and Peng, X., Journal of Materials Chemistry A 2 (34), 1377213782 (2014).Google Scholar
Yeh, C.-N., Raidongia, K., Shao, J., Yang, Q.-H. and Huang, J., Nat Chem 7 (2), 166170 (2015).Google Scholar
Compton, O. C., Cranford, S. W., Putz, K. W., An, Z., Brinson, L. C., Buehler, M. J. and Nguyen, S. T., ACS Nano 6 (3), 20082019 (2011).Google Scholar
Zawisza, B., Sitko, R., Malicka, E. and Talik, E., Analytical Methods 5 (22), 64256430 (2013).Google Scholar
Zhao, G., Li, J., Ren, X., Chen, C. and Wang, X., Environmental Science & Technology 45 (24), 1045410462 (2011).CrossRefGoogle Scholar
Kwon, H. T., Jeong, H.-K., Lee, A. S.,An, H. S. and Lee, J. S., Journal of the American Chemical Society 137 (38), 1230412311 (2015).Google Scholar
Schejn, A., Aboulaich, A., Balan, L., Falk, V., Lalevee, J., Medjahdi, G., Aranda, L., Mozet, K. and Schneider, R., Catalysis Science & Technology 5 (3), 18291839 (2015).CrossRefGoogle Scholar
Hillman, F., Zimmerman, J. M., Paek, S.-M., Hamid, M. R. A., Lim, W. T. and Jeong, H.-K., Journal of Materials Chemistry A 5 (13), 60906099 (2017).Google Scholar