Article contents
Fabrication of silicon nanowire based solar cells using TiO2/Al2O3 stack thin films
Published online by Cambridge University Press: 11 January 2018
Abstract
To improve conversion efficiency of silicon nanowire (SiNW) solar cells, it is very important to reduce the surface recombination rate on the surface of SiNWs, since SiNWs have a large surface area. We tried to cover SiNWs with aluminum oxide (Al2O3) and titanium oxide (TiO2) by atomic layer deposition (ALD), since Al2O3 grown by ALD provides an excellent level of surface passivation on silicon wafers and TiO2 has a higher refractive index than Al2O3, leading to the reduction of surface reflectance. The effective minority carrier lifetime in SiNW arrays embedded in a TiO2/Al2O3 stack layer of 94 μsec was obtained, which was comparable to an Al2O3 single layer. The surface reflectance of SiNW solar cells was drastically decreased below around 5% in all of the wavelength range using the Al2O3/TiO2/Al2O3 stack layer. Heterojunction SiNW solar cells with the structure of ITO/p-type hydrogenated amorphous silicon (a-Si:H)/n-type SiNWs embedded in Al2O3 and TiO2 stack layer for passivation/n-type a-Si:H/back electrode was fabricated, and a typical rectifying property and open-circuit voltage of 356 mV were successfully obtained.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2018
References
REFERENCES
- 5
- Cited by