Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T20:38:02.490Z Has data issue: false hasContentIssue false

Fabrication of Microfluidic Devices for the study of Ion transport through Single-Walled Carbon Nanotubes

Published online by Cambridge University Press:  20 May 2016

Khadija Yazda
Affiliation:
Laboratoire Charles Coulomb UMR 5221, CNRS-Université de Montpellier, F-34095, France
Sophie Roman
Affiliation:
Laboratoire Charles Coulomb UMR 5221, CNRS-Université de Montpellier, F-34095, France
Saïd Tahir
Affiliation:
Laboratoire Charles Coulomb UMR 5221, CNRS-Université de Montpellier, F-34095, France
François Henn
Affiliation:
Laboratoire Charles Coulomb UMR 5221, CNRS-Université de Montpellier, F-34095, France
Vincent Jourdain*
Affiliation:
Laboratoire Charles Coulomb UMR 5221, CNRS-Université de Montpellier, F-34095, France
*
Get access

Abstract

Studying the transport of ions through single-walled carbon nanotubes (SWCNTs) necessitate the fabrication of a fluidic setup integrating carbon nanotubes. In this article, we report on the development of a simple fabrication protocol of SWCNTs fluidic devices. This protocol allows an excellent control of the system features and of the experimental conditions compared with previously published protocols. Our protocol based on the use of the popular SU-8, the preferred photoresist for the fabrication of high-aspect-ratio patterns, allows one to prepare sealed microfluidic devices incorporating one or several tens of individual carbon nanotubes of length between 20 and 80 µm.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sun, L. and Crooks, R. M., J. Am. Chem. Soc. 122, 1234012345 (2000).Google Scholar
Sun, X., Su, X., Wu, J. and Hinds, B. J., Langmuir 27, 31503156 (2011).Google Scholar
Fornasiero, F., Park, H. G., Holta, J. K., Stadermanna, M., Grigoropoulos, C. P., Noy, A. and Bakajin, O., PNAS 105, 1725017255 (2007).Google Scholar
Holt, J., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A., Grigoropoulos, C., Noy, A. and Bakajin, O., Science 312, 10341037 (2006).Google Scholar
Wu, J., Gerstandt, K., Zhang, H., Liu, J. and Hinds, B. J., Nature Nanotechnology 7, 133139 (2012).Google Scholar
He, J., Liu, H., Pang, P., Cao, D. and Lindsay, S., J. Phys.: Condens. Matt. 22, 454112 (2010).Google Scholar
Cao, D., Pang, P., He, J., Luo, T., Park, J. H., Krstic, P., Nuckolls, C., Tang, J. and Lindsay, S., ACS Nano 5, 3113 (2011).Google Scholar
Lee, C. Y., Choi, W., Han, J. and Strano, M. S., Science 329, 13201324 (2010).Google Scholar
Liu, L., Yang, C., Zhao, K., Li, J. et Wu, H. C., Nat. Comm. 4, 2989 (2013).Google Scholar
Geng, J., Kim, K., Zhang, J., Escalada, A., Tunuguntla, R., Comolli, L. R., Allen, F. I., Shnyrova, A. V., Cho, K. R., Munoz, D., Wang, Y. M., Grigoropoulos, C. P., Ajo-Franklin, C. M., Frolov, V. A. and Noy, A., Nature 514, 612615 (2014).Google Scholar
Schneider, G. F., Calado, V. E., Zandbergen, H., Vandersypen, L. M. K. and Dekker, C., Nano letters 10, 1912 (2010).Google Scholar
Li, Z., Wang, Y., Kozbial, A., Shenoy, G., Zhou, F., McGinley, R., Ireland, P., Morganstein, B., Kunkel, A., Surwade, S. P., , L. L. and Liu, H., Nature Materials 12, 925931 (2013).Google Scholar