Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T07:53:42.834Z Has data issue: false hasContentIssue false

Extremely tough cyclic peptide nanopolymers

Published online by Cambridge University Press:  30 September 2019

Manoj K. Kolel-Veetil*
Affiliation:
Chemistry Division, US Naval Research Laboratory, Washington, DC20375.
LCDR Luis Estrella
Affiliation:
Chemistry Division, US Naval Research Laboratory, Washington, DC20375.
Christopher R. So
Affiliation:
Chemistry Division, US Naval Research Laboratory, Washington, DC20375.
Kenan P. Fears
Affiliation:
Chemistry Division, US Naval Research Laboratory, Washington, DC20375.
*
Get access

Abstract

We present a new class of bioinspired nanomaterials that are stabilized by a combination of covalent and hydrogen bonds. Prior work by others has shown that cyclic peptides can self-assemble to form supramolecular assemblies through backbone-backbone hydrogen bonding. To improve upon this molecular architecture, we develop a synthesis route to polymerize cyclic peptides and form a linear polymer chain that can transition between a rigid nanorod and an unfolded conformation. For a cyclic peptide polymer containing amine-terminated side chains on each ring, we demonstrate self-assembly can be triggered in aqueous solutions by varying the pH. We measure the elastic modulus of the rigid nanorods to be ca. 50 GPa, which is comparable to our molecular dynamics (MD) prediction (ca. 64 GPa). Our results highlight the uniqueness of our molecular architecture, namely their exemplary toughness (up to 3 GJ m-3), in comparison to other cyclic peptide-based assemblies. Finally, we demonstrate amphiphilic cyclic β-peptides are capable of inhibiting the growth of gram-negative and gram-positive bacteria.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Smith, B.L., et al. , Nature 399, 761763 (1999).CrossRefGoogle Scholar
Guthold, M., et al. , Cell Biochem. Biophys. 49, 165181 (2007).CrossRefGoogle Scholar
Vollrath, F., Knight, D.P., Nature 410, 541548 (2001).CrossRefGoogle Scholar
Gittes, F., Mickey, B., Nettleton, J., Howard, J., J. Cell Biol. 120, 923934 (1993).CrossRefGoogle Scholar
Buehler, M.J., Proc. Natl. Acad. Sci. USA 103, 1228512290 (2006).CrossRefGoogle Scholar
Agnarsson, I., Kuntner, M., Blackledge, T.A., PloS ONE 5, e11234 (2010).CrossRefGoogle Scholar
Keten, S., Buehler, M.J., J. R. Soc. Interface 7, 17091721 (2010).CrossRefGoogle Scholar
Salvetat, J.-P., et al. , Phys. Rev. Lett. 82, 944947 (1999).CrossRefGoogle Scholar
Dickie, R.A., Smith, T.L., J. Polym. Sci. A2, 687707 (1969).Google Scholar
Ghadiri, M.R., Granja, J.R., Milligan, R.A., McRee, D.E., Khazanovich, N., Nature 366, 324-327 (1993).CrossRefGoogle Scholar
Bong, D.T., Clark, T.D., Granja, J.R., Ghadiri, M.R., Angew. Chem. Int. Ed. 40, 989-1011 (2001).Google Scholar
Rising, A., and Johansson, J., Nat. Chem. Biol. 11, 309315(2015).CrossRefGoogle Scholar
Fears, K.P., Kolel-Veetil, M.K., Barlow, D.E., Bernstein, N., So, C.R., Wahl, K.J., Li, X., Kulp, J.L. III, Latour, R., Clark, T.D., Nat. Commun. 9, 4090/1-8 (2018).CrossRefGoogle Scholar
Couet, J., Samuel, J., Kopyshev, A., Santer, S., Biesalski, M., Angew. Chem. Int. Ed. 44, 32973301 (2005).CrossRefGoogle Scholar
Couet, J., Biesalski, M., Small 4, 10081016 (2008).CrossRefGoogle Scholar
Bernstein, N., Kulp, J.L., , J. L. III, Cato, M.A. Jr., Clark, T.D., J. Phys. Chem. A 114, 11948-11952 (2010).CrossRefGoogle Scholar
Keten, S., Buehler, M.J., Nano Letters 8, 743-748 (2008).CrossRefGoogle Scholar
Keten, S., Xu, Z., Ihle, B., Buehler, M.J., Nat. Mater. 9, 359-367 (2010).CrossRefGoogle Scholar
Ghanaeian, A., Soheilifard, R., J. Mech. Behav. Biomed. Mater. 86, 105-112 (2018).CrossRefGoogle Scholar
Chang, S.-W., Shefelbine, S.J., Buehler, M.J., Biophys. J. 102, 640-648 (2012).CrossRefGoogle Scholar
Thorstholm, L., Craik, D.J., Drug Discovery Today: Technologies 9, e13-e21 (2012).CrossRefGoogle Scholar
Hartgerink, J.D., Clark, T.D., Ghadiri, M.R., Chem. Euro. J. 4, 1367-1373 (1998).3.0.CO;2-B>CrossRefGoogle Scholar
Fernandez-Lopez, S. et al. , Nature 412, 452-455 (2001).CrossRefGoogle Scholar
Cirac, A.D., Moiset, G., Mika, J.T., Koçer, A., Salvador, P., Poolman, B., Marrink, S.J., Sengupta, D., Biophys. J. 100, 2422-2431 (2011).CrossRefGoogle Scholar
Khalfa, A., Tarek, M., J. Phys. Chem. B 114, 2676-2684 (2010).CrossRefGoogle Scholar