Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-28T01:56:18.929Z Has data issue: false hasContentIssue false

Evaporation-Induced Self-Assembly of Semi-Crystalline PbI2(DMSO) Complex Films as a Facile Route to Reproducible and Efficient Planar p-i-n Perovskite Solar Cells

Published online by Cambridge University Press:  30 January 2018

Brandon Dunham
Affiliation:
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
Vivek Vattipalli
Affiliation:
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
Christos Dimitrakopoulos*
Affiliation:
Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts01003, United States
*
*Corresponding author: [email protected]
Get access

Abstract

High quality active layers for hybrid organic-inorganic perovskite solar cells are essential for achieving maximum device performance. However, perovskite active layers in solar cells are frequently prepared with unoptimized processes that lead to layers of inferior quality. This is often the case when research focuses on other aspects of the solar cell device, such as device design and architecture, carrier transport layers, electrodes, interlayers, etc. In this study, a single-step spin-coating method was used to prepare semi-crystalline PbI2(DMSO) complex films via evaporation-induced self-assembly. These optimized intermediate films were then used to form homogeneous methylammonium lead iodide (MAPbI3) perovskite films of optimum thickness (ca. 400 nm) with uniform surface coverage, good crystallinity, high purity, and grain sizes up to one micron, by employing a sequential deposition process involving intramolecular exchange between the PbI2(DMSO) complex film and a methylammonium iodide (MAI) layer deposited on top of it. We found that for certain ranges of MAI concentration, the formation of optimal-quality perovskite active layers was independent of MAI concentration, so long as MAI deposition occurred at specific corresponding spin speeds. Planar p-i-n perovskite solar cells comprising the optimized active layers were fabricated, and they exhibited negligible hysteresis and a maximum power conversion efficiency (PCE) of 16.72%, without any additional compositional and interfacial engineering. The latter can be used in the future to further enhance the PCE. These findings demonstrate the importance of an optimized perovskite active layer for reproducibly fabricating high-efficiency planar p-i-n photovoltaic devices. Additionally, the simplicity of the PbI2(DMSO) complex film preparation and the versatility of the MAI deposition with this fabrication method further enhances the potential of this material for large-scale processing.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cao, D.H., Stoumpos, C.C., Farha, O.K., Hupp, J.T., Kanatzidis, M.G., J. Am. Chem. Soc. 137, 78437850 (2015).Google Scholar
Mitzi, D.B., Chem. Mater. 8, 791800 (1996).Google Scholar
Mitzi, D.B., Liang, K., Chem. Mater. 9, 29902995 (1997).Google Scholar
Liang, K., Mitzi, D.B., Prikas, M.T., Chem. Mater. 10, 403411 (1998).Google Scholar
Kagan, C.R., Mitzi, D.B., Dimitrakopoulos, C.D., Science 286, 945947 (1999).Google Scholar
Kojima, , Teshima, K., Shirai, Y., Miyasaka, T., J. Am. Chem. Soc. 131, 60506051 (2009).Google Scholar
Chung, I., Lee, B., He, J., Chang, R.P., Kanatzidis, M.G., Nature 485, 486489 (2012).Google Scholar
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Grätzel, M., Park, N.-G., Sci. Rep. 2, 17 (2012).Google Scholar
Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J., Science 338, 643647 (2012).Google Scholar
NREL Efficiency Chart: (2017). Available at https://www.nrel.gov/pv/assets/images/efficiency-chart.png (on 11 November 2017).Google Scholar
Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., Snaith, H.J., Energy Environ. Sci. 7, 982 (2014).Google Scholar
Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Il Seok, S., Nano Lett. 13, 17641769 (2013).Google Scholar
Kulkarni, S.A., Baikie, T., Boix, P.P., Yantara, N., Mathews, N., Mhaisalkar, S., J. Mater. Chem. A 2, 92219225 (2014).Google Scholar
Park, B., Philippe, B., Jain, S.M., Zhang, X., Edvinsson, T., Rensmo, H., Zietz, B., Boschloo, G., J. Mater. Chem. A 3, 2176021771 (2015).Google Scholar
Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G., Nanoscale 3, 40884093 (2011).Google Scholar
Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., Mhaisalkar, S., Sum, T.C., Science 342, 344347 (2013).Google Scholar
Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J., Science 342, 341344 (2013).Google Scholar
Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H., Mohite, A.D., Science 347, 522525 (2015).Google Scholar
Song, T., Chen, Q., Zhou, H.-P., Jiang, C., Wang, H.-H., Yang, Y., Liu, Y., You, J., Yang, Y., J. Mater. Chem. A 3, 90329050 (2015).Google Scholar
Ahn, N., Son, D.-Y., Jang, I.-H., Kang, S.M., Choi, M., Park, N.-G., J. Am. Chem. Soc. 137, 86968699 (2015).Google Scholar
Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M., Park, N.-G., Nat. Nanotechnol. 9, 927932 (2014).Google Scholar
Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M., Nature 499, 316319 (2013).Google Scholar
Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G., Yang, Y., J. Am. Chem. Soc. 136, 622625 (2014).Google Scholar
Liu, M., Johnston, M.B., Snaith, H.J., Nature 501, 395398 (2013).Google Scholar
Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Il Seok, S., Nat. Mater. 13, 897903 (2014).Google Scholar
Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y., Huang, J., Energy Environ. Sci. 7, 2619 (2014).Google Scholar
Wu, Y., Islam, A., Yang, X., Qin, C., Liu, J., Zhang, K., Peng, W., Han, L., Energy Environ. Sci. 7, 29342938 (2014).Google Scholar
Li, W., Fan, J., Li, J., Mai, Y., Wang, L., J. Am. Chem. Soc. 137, 1039910405 (2015).Google Scholar
Chiang, C.-H., Tseng, Z.-L., Wu, C.-G., J. Mater. Chem. A 2, 1589715903 (2014).Google Scholar
Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Il Seok, S., Science 348, 12341237 (2015).Google Scholar
Jo, Y., Oh, K.S., Kim, M., Kim, K., Lee, H., Lee, C., Kim, D.S., Adv. Mater. Interfaces 3, 1500768 (2016).Google Scholar
Docampo, P., Ball, J.M., Darwich, M., Eperon, G.E., Snaith, H.J., Nat. Commun. 4, 16 (2013).Google Scholar
You, J., Hong, Z., Yang, Y., Chen, Q., Cai, M., Song, T., Chen, C., Lu, S., Liu, Y., Zhou, H., Yang, Y., ACS Nano. 8, 16741680 (2014).Google Scholar
Heo, J.H., Han, H.J., Kim, D., Ahn, T.K., Im, S.H., Energy Environ. Sci. 8, 16021608 (2015).Google Scholar
Wu, C.-G., Chiang, C.-H., Tseng, Z.-L., Nazeeruddin, M.K., Hagfeldt, A., Grätzel, M., Energy Environ. Sci. 8, 27252733 (2015).Google Scholar
Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Il Seok, S., Nature 517, 476480 (2015).Google Scholar
Bag, M., Renna, L.A., Adhikari, R.Y., Karak, S., Liu, F., Lahti, P.M., Russell, T.P., Tuominen, M.T., Venkataraman, D., J. Am. Chem. Soc. 137, 1313013137 (2015).Google Scholar
Xue, Q., Hu, Z., Liu, J., Lin, J., Sun, C., Chen, Z., Duan, C., Wang, J., Liao, C., Lau, W.M., Huang, F., Yip, H.-L., Cao, Y., J. Mater. Chem. A 2, 1959819603 (2014).Google Scholar
Zhou, H., Chen, Q., Li, G., Luo, S., Song, T. -b., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y., Science 345, 542546 (2014).Google Scholar
Min, J., Zhang, Z., Hou, Y., Quiroz, C.O.R., Przybilla, T., Bronnbauer, C., Guo, F., Forberich, K., Azimi, H., Ameri, T., Spiecker, E., Li, Y., Brabec, C.J., Chem. Mater. 27, 227234 (2015).Google Scholar
Liu, Y., Bag, M., Renna, L.A., Page, Z.A., Kim, P., Emrick, T., Venkataraman, D., Russell, T.P., Adv. Energy Mater. 6, 17 (2016).Google Scholar