Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T15:43:30.086Z Has data issue: false hasContentIssue false

Estimating the Relative Energy Content of Reactive Materials Using Nanosecond-Pulsed Laser Ablation

Published online by Cambridge University Press:  16 January 2018

Jennifer L. Gottfried*
Affiliation:
U.S. Army Research Laboratory, RDRL-WML-B, Aberdeen Proving Ground, MD21009, U.S.A.
Steven W. Dean
Affiliation:
U.S. Army Research Laboratory, RDRL-WML-B, Aberdeen Proving Ground, MD21009, U.S.A.
Eric S. Collins
Affiliation:
U.S. Army Research Laboratory, RDRL-WML-B, Aberdeen Proving Ground, MD21009, U.S.A.
Chi-Chin Wu
Affiliation:
U.S. Army Research Laboratory, RDRL-WML-B, Aberdeen Proving Ground, MD21009, U.S.A.
*
Get access

Abstract

Recently, a laboratory-scale method for measuring the rapid energy release from milligram quantities of energetic material has been developed based on the high-temperature plasma chemistry induced by a focused, nanosecond laser pulse. The ensuing exothermic chemical reactions result in an increase in the laser-induced shock wave velocity compared to inert materials. Laser-induced air shock from energetic materials (LASEM) provides a method for estimating the detonation performance of novel organic-based energetic materials prior to scale-up and full detonation testing. Here, the extension of LASEM to non-organic energetic materials is discussed. The laser-induced shock velocities from reactive materials such as Al/PTFE, Al/CuO, Al/Zr alloys, Al/aluminum iodate hexahydrate, and porous silicon composites have been measured; in many cases, the high sensitivity of the samples resulted in propagation of the reaction to the surrounding material, producing significantly higher shock velocities than conventional energetic materials. Methods for compensating for this effect will be discussed. Despite this limitation, the relative comparison of the shock velocities, emission spectra, and combustion behavior of each type of material provides some insight into the mechanisms for increasing the energy release of the material on a fast (μs) and/or slow (ms) timescale.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Burakov, V. S., Tarasenko, N. V., and Savastenko, N. A., Spectrochim. Acta, Part B 56, 961 (2001).CrossRefGoogle Scholar
Gottfried, J. L., Appl. Opt. 51, B13B21 (2012).CrossRefGoogle Scholar
Roy, S., Jiang, N., Stauffer, H. U., Schmidt, J. B., Kulatilaka, W. D., Meyer, T. R., Bunker, C. E., and Gord, J. R., J. Appl. Phys. 113, 184310 (2013).Google Scholar
Delgado, T., Vadillo, J. M., and Laserna, J. J., J. Anal. At. Spectrom. 29, 16751685 (2014).CrossRefGoogle Scholar
Kalam, S. A., Murthy, N. L., Mathi, P., Kommu, N., Singh, A. K., and Rao, S. V., J. Anal. At. Spectrom. 32, 15351546 (2017).Google Scholar
Guo, W., Zheng, X., Yu, G., Zhao, J., Zeng, Y., and Liu, C., J. Appl. Phys. 120, 123301 (2016).Google Scholar
Rezunkov, Y. A., J. Opt. Technol. 74, 526535 (2007).CrossRefGoogle Scholar
Phipps, C., Birkan, M., Bohn, W., Eckel, H.-A., Horisawa, H., Lippert, T., Michaelis, M., Rezunkov, Y., Sasoh, A., Schall, W., Scharring, S., and Sinko, J., J. Propul. Power 26, 609637 (2010).Google Scholar
Kimblin, C., Trainham, R., Capelle, G. A., Mao, X., and Russo, R. E., AIP Adv. 7, 095208 (2017).Google Scholar
Gottfried, J. L., Phys. Chem. Chem. Phys. 16, 2145221466 (2014).Google Scholar
Gottfried, J. L., Propellants Explos. Pyrotech. 40, 674681 (2015).CrossRefGoogle Scholar
Fischer, D., Gottfried, J. L., Klapötke, T. M., Karaghiosoff, K., Stierstorfer, J., and Witkowski, T. G., Angew. Chem., Int. Ed. 128, 16366–13369 (2016).CrossRefGoogle Scholar
Gottfried, J. L. and Bukowski, E. J., Appl. Opt. 56, B47B57 (2017).Google Scholar
Gottfried, J. L., Klapötke, T. M., and Witkowski, T. G., Propellants Explos. Pyrotech. 42, 353359 (2017).CrossRefGoogle Scholar
De Lucia, F. C. Jr. and Gottfried, J. L., Propellants, Explos., Pyrotech. 35, 268277 (2010).Google Scholar
De Lucia, F. C. and Gottfried, J. L., J. Phys. Chem. A 117, 95559563 (2013).CrossRefGoogle Scholar
Collins, E. S. and Gottfried, J. L., Propellants Explos. Pyrotech. 42, 592602 (2017).CrossRefGoogle Scholar
Mukasyan, A. S., Khina, B. B., Reeves, R. V., and Son, S. F., Chem. Eng. J. 174, 677686 (2011).Google Scholar
Sippel, T. R., Son, S. F., and Groven, L. J., Propellants Explos. Pyrotech. 38, 286295 (2013).Google Scholar
Sippel, T. R., Son, S. F., and Groven, L. J., Combust. Flame 161, 311321 (2014).CrossRefGoogle Scholar
Rubio, M. A., Gunduz, I. E., Groven, L. J., Sippel, T. R., Han, C. W., Unocic, R. R., Ortalan, V., and Son, S. F., Combust. Flame 176, 162171 (2017).Google Scholar
Yarrington, C. D., Son, S. F., and Foley, T. J., J. Propul. Power 26, 734743 (2010).Google Scholar
Wang, H., Jian, G., Yan, S., DeLisio, J. B., Huang, C., and Zachariah, M. R., ACS Appl. Mater. Interfaces 5, 67976801 (2013).Google Scholar
Wang, H., Jian, G., Egan, G. C., and Zachariah, M. R., Combust. Flame 161, 22032208 (2014).Google Scholar
Altshuler, A. M., “Structural Bond Energy Release in Energetic Materials as New Means for Designing Nonconventional High Explosives: An Analysis of Soviet Research,” Report No. TRC-91–0003 TR (Technical Research Corporation, McLean, VA, 1991).Google Scholar
Weingarten, N. S., Gottfried, J. L., Batyrev, I. G., Collins, E. S., and Zachariah, M. R., “Utilizing the power of nanostructures to their fullest capability in energetic formulations,” Report No. ARL-TR-7604 (2016).Google Scholar
Overdeep, K. R., Livi, K. J. T., Allen, D. J., Glumac, N. G., and Weihs, T. P., Combust. Flame 162, 28552864 (2015).CrossRefGoogle Scholar
Smith, D. K., Bello, M. N., Unruh, D. K., and Pantoya, M. L., Combust. Flame 179, 154156 (2017).Google Scholar
Plessis, M. d., Propellants, Explos., Pyrotech. 39, 348364 (2014).Google Scholar
Piekiel, N. W. and Morris, C. J., ACS Appl. Mater. Interfaces 7, 98899897 (2015).Google Scholar
Abraham, A., Piekiel, N. W., Morris, C. J., and Dreizin, E. L., Propell. Explos. Pyrotech. 41, 179188 (2016).Google Scholar
Khalaf Abbas, I., Ahmed Najam, L., and UlKahliq AuobSulaiman, A., Int. J. Phys. 3, 17 (2015).CrossRefGoogle Scholar