Published online by Cambridge University Press: 17 July 2020
Silicon has attracted particular attention as a potential high capacity material for lithium based batteries. However, the application of Si-based electrodes remains challenging, in major part due to its significant irreversible energy loss during cycling. Here isothermal microcalorimetry (IMC) is demonstrated to be a precise and operando characterization method for tracking a battery's thermal behaviour and deconvoluting the contributions from electrochemical polarization, entropy change, and parasitic reactions. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and x-ray powder diffraction (XRD) further elucidate the Si reactivity in conjunction with the IMC.
equal contributions by W. Li and M. Vila.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.