Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T03:01:48.388Z Has data issue: false hasContentIssue false

Electronic Structure and Transport Properties of Doped Lead Chalcogenides from First Principles

Published online by Cambridge University Press:  14 August 2016

Piotr Śpiewak*
Affiliation:
Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
Krzysztof J. Kurzydłowski
Affiliation:
Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
*
Get access

Abstract

The structural and electronic properties of lead chalcogenides PbX (X=S, Se, and Te) are investigated by first-principles calculations based on the range-separated hybrid functionals and semilocal generalized gradient approximation. It is found that an accurate band structure description requires the hybrid functional with the spin-orbit coupling included. Using this approach, the band structure of lead telluride and doped lead selenide are calculated, and its influences on the transport properties are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Minnich, A.J., Dresselhaus, M.S., Ren, Z. F. and Chen, G., Energy Environ. Sci. 2, 466 (2009).Google Scholar
Vineis, C. J., Shakouri, A., Majumdar, A. and Kanatzidis, M. G., Adv. Mater. 22, 3970 (2010).Google Scholar
Zeberjadi, M., Esfarjani, K., Dresselhaus, M. S., Ren, Z. F. and Chen, G., Energy Environ. Sci. 5, 5147 (2012).CrossRefGoogle Scholar
Nolas, G. S., Cohn, J. L., and Slack, G. A., Phys. Rev. B 58, 164 (1998).CrossRefGoogle Scholar
Kanatzidis, M. G., Chem. Mater. 22, 648 (2010).Google Scholar
Pei, Y., Wang, H. and Snyder, G. J., Adv. Mater. 24, 6125 (2012).Google Scholar
Pei, Y., Lensch-Falk, J., Toberer, E. S., Medlin, D. L., and Snyder, G. J., Adv. Funct. Mater. 21, 241 (2011).CrossRefGoogle Scholar
Heremans, J. P., Jovovic, V., Toberer, E. S., Saramat, A., Kurosaki, K., Charoenphakdee, A., Yamanaka, S., and Snyder, G. J., Science 321, 554 (2008).Google Scholar
Jaworski, C. M., Wiendlocha, B., Jovovic, V., Heremans, J. P., Energy Environ. Sci. 4, 4155 (2011).Google Scholar
Zhang, Q., Wang, H., Liu, W., Wang, H., Yu, B., Zhang, Q., Tian, Z., Ni, G., Lee, S., Esfarjani, K., Chen, G., Ren, Z., Energy Environ. Sci. 5, 5246 (2012).Google Scholar
Heremans, J. P., Wiendlocha, B., Chamoire, A. M., Energy Environ. Sci. 5, 5510 (2012).Google Scholar
Wang, S., Wang, Z., Setyawan, W., Mingo, N., Curtarolo, S., Phys. Rev. X 1, 021012 (2011).Google Scholar
Lee, J.-H., Wu, J., and Grossman, J. C., Phys. Rev. Lett. 104, 016602 (2010).Google Scholar
Mahan, G. D. and Sofo, J. O., Proc. Natl. Acad. Sci. USA 93, 7436 (1996).Google Scholar
Madsen, G. K. H. and Singh, D. J., Comput. Phys. Commun. 175, 67 (2006).Google Scholar
Pizzi, G., Volja, D., Kozinsky, B., Fornari, M., and Marzari, N., Comput. Phys. Commun. 185, 422 (2014).Google Scholar
Zhao, L-D.,Dravidb, a V. P. and Kanatzidis, M. G., Energy Environ. Sci. 7, 251 (2014).Google Scholar
Heyd, J., Scuseria, G. E., and Ernzerhof, M., J. Chem. Phys. 118, 8207 (2003); and erratum ibid. 124, 219906 (2006).Google Scholar
Hummer, K., Grüuneis, A., and Kresse, G., Phys. Rev. B 75, 195211 (2007).Google Scholar
Śpiewak, P., Vanhellemont, J., and Kurzydłowski, K. J., J. Appl. Phys. 110 (2011) 063534.Google Scholar
Śpiewak, P., and Kurzydłowski, K. J., Phys. Rev. B 88, 195204 (2013).Google Scholar
Advanced Calculations for Defects in Materials, edited by Alkauskas, A., Deak, P., Neugebauer, J., Pasquarello, A., and Van de Walle, C. G. (Wiley-VCH, Germany, 2011).CrossRefGoogle Scholar
Ahmad, S., Mahanti, S., Hoang, K., and Kanatzidis, M., Phys. Rev. B 74, 155205 (2006).CrossRefGoogle Scholar
Peng, H., Song, J-H, Kanatzidis, M. G., and Freeman, A. J., Phys. Rev. B 84, 125207 (2011).Google Scholar
Joseph, E. and Amouyal, Y., J. Appl. Phys. 117, 175102 (2015).Google Scholar
Tan, X., Shao, H., Hu, T., Liu, G-Q. and Ren, S-F., J. Phys.: Condens. Matter 27, 095501 (2015).Google Scholar
Borges, P. D., Petersen, J.E., Scolfaro, L., Leite Alves, H. W., Myers, T. H., J. Solid State Chem. 227, 123 (2015).Google Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B 54, 11169 (1996); P. E. Blöchl, ibid. 50, 17953 (1994); G. Kresse and D. Joubert, ibid. 59, 1758 (1999).Google Scholar
Schimka, L., Harl, J., and Kresse, G., J. Chem. Phys. 134, 024116 (2011).Google Scholar
Constantin, L. A., Perdew, J. P., and Pitarke, J. M., Phys. Rev. B 79, 075126 (2009).Google Scholar
Monkhorst, H. J. and Pack, J. D., Phys. Rev. B 13, 5188 (1976).Google Scholar
Paier, J., Marsman, M., Hummer, K., Kresse, G., Gerber, I. C., and Ángyán, J. G., J. Chem. Phys. 124, 154709 (2006); and erratum ibid. 125, 249901(E) (2006).Google Scholar
Murnaghan, F. D., Proc. Natl. Acad. Sci. USA 30, 244 (1944).Google Scholar
Marzari, N., Mostofi, A. A., Yates, J. R., Souza, I., and Vanderbilt, D., Rev. Mod. Phys. 84, 1419 (2012)CrossRefGoogle Scholar
Zhang, Y., Ke, X. Z., Chen, C. F., Yang, J., and Kent, P. R. C., Phys. Rev. B 80, 024304 (2009).Google Scholar
Skelton, J. M., Parker, S. C., Togo, A., Tanaka, I., and Walsh, A., Phys. Rev. B 89, 205203 (2014).Google Scholar
Shishkin, M. and Kresse, G., Phys. Rev. B 75, 235102 (2007).Google Scholar
Preier, H., App. Phys. 20, 189 (1979).Google Scholar
Crocker, A. J., Rogers Br, L. M.., J. Appl. Phys. 18, 563 (1967).Google Scholar
Martin, J., Wang, Li., Chen, Lidong, Nolas, G. S., Phys. Rev. B 79, 115311 (2009).CrossRefGoogle Scholar
Harman, T. C., Spears, D. L., and Manfra, M. J., J. Electron. Mater. 25, 1121 (1996).Google Scholar