Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-27T22:15:48.688Z Has data issue: false hasContentIssue false

Electronic Functions in Liquid-Crystalline Nanostructures with High Polarization

Published online by Cambridge University Press:  24 May 2019

Masahiro Funahashi*
Affiliation:
Program of Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa761-0396, Japan Health Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-cho, Takamatsu, Kagawa761-0395, Japan
*
Get access

Abstract

Multifunctionality was created by coupling an electronic charge carrier transport with ionic conductivity or ferroelectricity in polarized liquid crystal phases. Liquid-crystalline perylene bisimide derivatives bearing cyclotetrasiloxane rings and triethylene oxide chains formed nanosegregated columnar structures which could conduct ions as well as electrons. The spin-coated thin films could be insolubilized by the exposure on acid vapors and display electrochromism. Phenylterthiophene derivatives bearing a chiral alkyl side chain exhibited a ferroelectric phase, in which a photovoltaic effect was caused by the interaction between photogenerated charge carriers with the internal electric field formed by the spontaneous polarization of the ferroelectric phase.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Pisula, W., Zorn, M., Chang, J.Y., Müllen, K., Zentel, R., Macromol. Rapid Commun. 30, 11791202 (2009).CrossRefGoogle Scholar
O’Neill, M., Kelly, S.M., Adv. Mater. 23 (2011) 566584.CrossRefGoogle Scholar
Funahashi, M., Polym. J., 41, 459469 (2009).CrossRefGoogle Scholar
Funahashi, M., Zhang, F., and Tamaoki, N., Adv. Mater., 19, 353-358 (2007).CrossRefGoogle Scholar
Funahashi, M., Ishii, T., Sonoda, A., ChemPhysChem, 14, 2750-2758 (2013).CrossRefGoogle Scholar
Kato, T., Mizoshita, N., Kishimoto, K., Angew. Chem. Int. Ed., 45, 38-68 (2006).CrossRefGoogle Scholar
Funahashi, M., J. Mater. Chem. C, 2, 7451-7459 (2014).CrossRefGoogle Scholar
Funahashi, M. and Kato, T., Liq. Cryst., 42, 909-917 (2015).Google Scholar
Kato, T., Yoshio, M., Ichikawa, T., Soberats, B., Ohno, H., and Funahashi, M., Nat. Rev. Mater., 2, 17001 (2017).CrossRefGoogle Scholar
Funahashi, M. and Sonoda, A., Dalton Trans., 42, 15987-15994 (2013).CrossRefGoogle Scholar
Funahashi, M., Mater. Chem. Front., 1, 1137-1146 (2017).CrossRefGoogle Scholar
Funatsu, Y., Sonoda, A., and Funahashi, M., J. Mater. Chem. C, 3, 1982 (2015).CrossRefGoogle Scholar
Seki, A. and Funahashi, M., Chem. Lett., 45, 616618 (2016).CrossRefGoogle Scholar
Seki, A. and Funatsu, Y., Funahashi, M., Phys. Chem. Chem. Phys., 19, 16446 (2017).CrossRefGoogle Scholar
Seki, A. and Funahashi, M., Org. Electr., 62, 311 (2018).CrossRefGoogle Scholar
Funahashi, M., Yamaoka, M., Takenami, K., Sonoda, A., J. Mater. Chem. C, 1, 7872-7878 (2013).CrossRefGoogle Scholar
Takenami, K., Uemura, S., Funahashi, M., RSC Advances, 6, 5474-5584 (2016).CrossRefGoogle Scholar
Hosokawa, Y., Misaki, M., Yamamoto, S., Torii, M., Ishida, K., Ueda, Y., Appl. Phys. Lett., 100, 203305 (2012).CrossRefGoogle Scholar
Choi, T., Lee, S., Choi, Y. J., Kiryukhin, V., and Cheong, S.-W., Science, 324, 63-66 (2009).CrossRefGoogle Scholar
Sasabe, H., Nakayama, T., Kumazawa, K., Miyata, S., Fukada, E., Polym. J., 13, 967973(1981).CrossRefGoogle Scholar
Sugita, A., Suzuki, K., Tasaka, S., Phys. Rev. B, 69, 212201 (2004).CrossRefGoogle Scholar
Tabushi, I., Yamamura, K., and Kominami, K., J. Am. Chem. Soc., 108, 64096410 (1986).CrossRefGoogle Scholar
Tanabe, K., Yasuda, T., Yoshio, M., and Kato, T., Org. Lett. 9, 42714274 (2007).CrossRefGoogle Scholar
Chang, H., Shiozaki, T., Kamata, A., Kishida, K., Ohmori, T., Kiriya, D., Yamauchi, T., Furukawa, H. and Kitagawa, S., J. Mater. Chem. 17, 41364138 (2007).CrossRefGoogle Scholar
Aprahamian, I., Yasuda, T., Ikeda, T., Saha, S., Dichtel, WR, Isoda, K., Kato, T. and Stoddart, J. F., Angew. Chem. Int. Ed., 46, 46754679 (2007).CrossRefGoogle Scholar
Yazaki, S., Funahashi, M., Kagimoto, J., Ohno, H., Kato, T., J. Am. Chem. Soc., 132, 7702-7708 (2010).CrossRefGoogle Scholar
Sasaki, T., Chem. Rec., 6, 43-51 (2006).CrossRefGoogle Scholar
Anetai, H., Wada, Y., Takeda, T., Hoshino, N., Yamamoto, S., Mitsuishi, M., Takenobu, T., Akutagawa, T., J. Phys. Chem. Lett., 6, 1813-1818 (2015).CrossRefGoogle Scholar
Gorbunov, A. V., Iglesias, M. G., Guilleme, J., Cornelissen, T. D., Roelofs, W. S. C., Torres, T., González-Rodríguez, D., Meijer, E. W., Kemerink, M., Sci. Adv., 3, e1701017 (2017).CrossRefGoogle Scholar
Gorbunov, A. V., Haedler, A. T., Putzeys, T., Zha, R. H., Schmidt, H.-W., Kivala, M., Urbanavičiūtė, I., Wübbenhorst, M., Meijer, E. W., and Kemerink, M., ACS Appl. Mater. Interfaces, 8, 1553515542 (2016).CrossRefGoogle Scholar