Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T16:08:38.689Z Has data issue: false hasContentIssue false

Electromechanical Fields in Piezoelectric Semiconductor Nanofibers under an Axial Force

Published online by Cambridge University Press:  24 April 2017

C.L. Zhang*
Affiliation:
Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China Soft Matter Research Center (SMRC), Zhejiang University, Hangzhou, 310027, China Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Hangzhou, 310027, China
Y.X. Luo
Affiliation:
Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
R.R. Cheng
Affiliation:
Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
X.Y. Wang
Affiliation:
Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Piezoelectric semiconductors (PS) nanofibers, which simultaneously exhibit piezoelectricity and unique electric conductive behavior, have huge applications in sensors, energy harvesters, and piezoelectric field effect transistors. Electromechanical fields and charge carrier in PS nanofibers can be effectively controlled by a mechanical force. One-dimensional linear equations for PS nanofibers, which are suitable for small axial force and small electron concentration perturbation, are presented. Analytical expressions for the electromechanical fields and electron concentration in the fiber are obtained. Numerical results show that the electromechanical fields near the two ends are sensitive to the initial electron concentration and the applied axial force.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Wang, Z.L., Adv. Mater. 24, 4632 (2012).CrossRefGoogle Scholar
Wang, Z.L., Adv. Mater. 15, 432 (2003).CrossRefGoogle Scholar
Wang, Z.L., Nano Today 5, 540 (2010).CrossRefGoogle Scholar
Kumar, B. and Kim, S.W., J. Mater. Chem. 21, 18946 (2011).CrossRefGoogle Scholar
Gao, Y.F. and Wang, Z.L., Nano Lett. 9, 1103 (2009).CrossRefGoogle Scholar
Hu, Y.F., Chang, Y.L., Fei, P., Snyder, R.L. and Wang, Z.L., ACS Nano 4, 1234 (2010).CrossRefGoogle Scholar
Araneo, R., Lovat, G., Burghignoli, P. and Falconi, C., Adv. Mater. 24, 4719 (2012).CrossRefGoogle Scholar
Ji, J.L., Zhou, Z.Y., Yang, X., Zhang, W.D., Sang, S.B. and Li, P.W., Small 9, 3014 (2013).CrossRefGoogle Scholar
Shen, Y., Hong, J., Xu, S., Lin, S.S., Fang, H., Zhang, S., Ding, Y., Snyder, R.L. and Wang, Z.L., Adv. Funct. Mater. 20, 703 (2010).CrossRefGoogle Scholar
Chen, T T, Cheng, C L, Fu, S P and Chen, Y F 2007 Photoelastic effect in ZnO nanorods Nanotech. 18, 225705.CrossRefGoogle Scholar
Yoo, J., Lee, C.H., Doh, Y.J., Jung, H.S. and Yi, G.C., Appl. Phys. Lett. 94, 223117 (2009).CrossRefGoogle Scholar
Xue, H.Z., Pan, N., Li, M., Wu, Y.K., Wang, X.P. and Hou, J.G., Nanotech. 21, 215701 (2010).CrossRefGoogle Scholar
Gao, P.X., Song, J.H., Liu, J. and Wang, Z.L., Adv. Mater. 19, 67 (2007).CrossRefGoogle Scholar
Choi, M.Y., Choi, D., Jin, M.J., Kim, I., Kim, S.H., Choi, J.Y., Lee, S.Y., Kim, J.M. and Kim, S.W., Adv. Mater. 21, 2185 (2009).CrossRefGoogle Scholar
Romano, G., Mantini, G., Garlo, A.D., D’Amico, A., Falconi, C. and Wang, Z.L., Nanotech. 22, 465401 (2011).CrossRefGoogle Scholar
Asthana, A., Ardakani, H.A., Yap, Y.K. and Yassar, R.S., J. Mater. Chem. C 2, 3995 (2014).CrossRefGoogle Scholar
Liao, Q.L., Zhang, Z., Zhang, X.H., Mohr, M., Zhang, Y. and Fecht, H.J., Nano Res. 7, 917 (2014).CrossRefGoogle Scholar
Wang, X.D., Zhou, J., Song, J.H., Liu, J., Xu, N.S. and Wang, Z.L., Nano Lett. 6, 2768 (2006).CrossRefGoogle Scholar
Buyukkose, S., Hernandez-Minguez, A., Vratzov, B., Somaschini, C., Geelhaar, L., Riechert, H., Wiel, W.G. van der and Santos, P.V., Nanotech. 25, 135204 (2014).CrossRefGoogle Scholar
Yu, J., Ippolito, S.J., Wlodarski, W., Strano, M. and Kalantar-Zadeh, K., Nanotech. 21, 265502 (2010).CrossRefGoogle Scholar
Gao, Y.F. and Wang, Z.L., Nano Lett. 7, 24992505 (2007).CrossRefGoogle Scholar
Zhang, C.L., Wang, X.Y., Chen, W.Q. and Yang, J.S., Smart Mater. Struct. 26, 025030 (2017)CrossRefGoogle Scholar
Hutson, A.R. and White, D.L., J. Appl. Phys. 33, 40 (1962).CrossRefGoogle Scholar
Auld, B.A., Acoustic Fields and Waves in Solids, Vol. I, John Wiley and Sons, New York, 1973.Google Scholar
Pierret, R.F., Semiconductor Fundamentals, 2nd ed., Addison-Wesley, Reading, Massachusetts, 1988.Google Scholar
Wang, Z.L., Yang, R., Zhou, J., Qin, Y., Xu, C., Hu, Y. and Xu, S., Mater. Sci. Eng. R: Rep. 70, 320 (2010).CrossRefGoogle Scholar