Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T19:02:28.612Z Has data issue: false hasContentIssue false

Electrolyte Stability in Vanadium Flow Batteries

Published online by Cambridge University Press:  26 June 2018

D. Noel Buckley*
Affiliation:
Department of Physics, Bernal Institute, University of Limerick, Ireland Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland OH, USA
Daniela Oboroceanu
Affiliation:
Department of Physics, Bernal Institute, University of Limerick, Ireland
Nathan Quill
Affiliation:
Department of Physics, Bernal Institute, University of Limerick, Ireland
Catherine Lenihan
Affiliation:
Department of Physics, Bernal Institute, University of Limerick, Ireland
Deirdre Ní Eidhin
Affiliation:
Department of Physics, Bernal Institute, University of Limerick, Ireland
Robert P. Lynch
Affiliation:
Department of Physics, Bernal Institute, University of Limerick, Ireland Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland OH, USA
*
Get access

Abstract

The stability of VFB catholytes was investigated using both light-scattering measurements and visual observation. V2O5 precipitates after an induction time τ which shows an Arrhenius variation with temperature. The value of τ increases with increasing [S] and with decreasing [VV] but the activation energy remains constant with a value of (1.791±0.020) eV. Plots of ln τ against [S] and [VV] show good linearity and the slopes give values of βS = 2.073 M-1 and βV5 = –3.434 M-1 for the fractional rates of variation of τ with [S] and [VV], respectively. Combining the Arrhenius Equation with the observed log-linear variation of τ with [S] and [VV] provides a model for simulating the stability of catholytes. The addition of H3PO4 has a strong stabilizing effect on catholytes at higher temperatures. For example, at 50°C the induction time for precipitation for a typical catholyte is enhanced ∼ 12.5-fold by 0.1 M added H3PO4. At concentrations of H3PO4 less than ∼0.04 M, the precipitation time increases with increasing concentration at all temperatures investigated (30–70°C). At higher concentrations, induction time begins to decrease with increasing concentration of H3PO4: the changeover concentration depends on the temperature. Experiments at 70°C using other phosphate additives (sodium triphosphate, Na5P3O10, and sodium hexametaphosphate, (NaPO3)6) showed similar results to H3PO4.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Weber, A.Z., Mench, M.M., Meyers, J.P., Ross, P.N., and Gostick, J.T., Liu, Q., J. Appl. Electrochem. 41, 11371164 (2011)CrossRefGoogle Scholar
de Leon, C.P., Frias-Ferrer, A., Gonzalez-Garcia, J., Szanto, D.A., and Walsh, F.C., J. Power Sources 160, 716732 (2006)CrossRefGoogle Scholar
Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S., and Saleem, M., J. Electrochem. Soc. 158, R55R79 (2011)CrossRefGoogle Scholar
Watt-Smith, M.J., Ridley, P., Wills, R.G.A., Shah, A.A., and Walsh, F.C., J. Chem. Technol. Biotechnol. 88, 126138 (2013)CrossRefGoogle Scholar
Roe, S., Menictas, C., and Skyllas-Kazacos, M., J. Electrochem. Soc. 163, A5023A5028 (2016)CrossRefGoogle Scholar
Bourke, A., Miller, M.A., Lynch, R.P., Gao, X., Landon, J., Wainright, J.S., Savinell, R.F., and Buckley, D.N., J. Electrochem. Soc. 163, A5097A5105 (2016)CrossRefGoogle Scholar
Bourke, A., Miller, M.A., Lynch, R.P., Wainright, J.S., Savinell, R.F., and Buckley, D.N., J. Electrochem. Soc. 162, A1547A1555 (2015)CrossRefGoogle Scholar
Miller, M.A., Bourke, A., Quill, N., Wainright, J.S., Lynch, R.P., Buckley, D.N., and Savinell, R.F., J. Electrochem. Soc. 163, A2095A2102 (2016)CrossRefGoogle Scholar
Quill, N., Oboroceanu, D., Buckley, D.N., and Lynch, R.P., ECS Transsaction, 80, 314 (2017)CrossRefGoogle Scholar
Perry, M.L. and Weber, A.Z., J. Electrochem. Soc. 163, A5064A5067 (2016)CrossRefGoogle Scholar
Reed, D., Thomsen, E., Li, B., Wang, W., Nie, Z., Koeppel, B., Kizewski, J., and Sprenkle, V., J. Electrochem. Soc. 163, A5211A5219 (2016)CrossRefGoogle Scholar
Dewage, H.H., Yufit, V., and Brandon, N.P., J. Electrochem. Soc. 163, A5236A5243 (2016)CrossRefGoogle Scholar
Darling, R.M., Weber, A.Z., Tucker, M.C., and Perry, M.L., J. Electrochem. Soc. 163, A5014A5022 (2016)CrossRefGoogle Scholar
Manohar, A.K., Kim, K.M., Plichta, E., Hendrickson, M., Rawlings, S., and Narayanan, S.R., J. Electrochem. Soc. 163, A5118A5125 (2016)CrossRefGoogle Scholar
Tokuda, N., Kanno, T., Hara, T., Shigematsu, T., Tsutsui, Y., Ikeuchi, A., Itou, T., and Kumamoto, T., SEI Tech. Rev., 88-94 (2000)Google Scholar
Vynnycky, M., Energy 36, 22422256 (2011)CrossRefGoogle Scholar
Oboroceanu, D., Quill, N., Lenihan, C., Ní Eidhin, D., Albu, S. P., Lynch, R. P., and Buckley, D. N., ECS Trans. 77, 107115 (2017)CrossRefGoogle Scholar
Kear, G., Shah, A.A., and Walsh, F.C., Int. J. Energy Res. 36, 11051120 (2012)CrossRefGoogle Scholar
Petchsingh, C., Quill, N., Joyce, J.T., Ní Eidhin, D., Oboroceanu, D., Lenihan, C., Gao, X., Lynch, R.P., and Buckley, D.N., J. Electrochem. Soc. 163, A5068A5083 (2016)CrossRefGoogle Scholar
Buckley, D.N., Gao, X., Lynch, R.P., Quill, N., and Leahy, M.J., J. Electrochem. Soc. 161, A524A534 (2014)CrossRefGoogle Scholar
Buckley, D.N., Gao, X., Lynch, R.P., Leahy, M.J., Bourke, A., and Flynn, G., European Patent EP 13195315, (2 December 2013)Google Scholar
Gao, X., Lynch, R.P., Leahy, M.J., and Buckley, D.N., ECS Trans. 45, 2536 (2013)CrossRefGoogle Scholar
Tang, Z., Aaron, D.S., Papandrew, A.B., and Zawodzinski, T.A., ECS Trans. 41, 19 (2012)Google Scholar
Skyllas-Kazacos, M. and Kazacos, M., J. Power Sources 196, 88228827 (2011)CrossRefGoogle Scholar
Quill, N., Petchsingh, C., Lynch, R. P., Gao, X., Oboroceanu, D., Ní Eidhin, D., O’Mahony, M., Lenihan, C., and Buckley, D. N., ECS Trans. 64, 2339 (2015)CrossRefGoogle Scholar
Quill, N., Lynch, R.P., Gao, X., and Buckley, D.N., The Electrochemical Society Meeting Abstract, MA2014-01, 389 (2014)Google Scholar
Whitehead, A.H. and Harrer, M., J. Power Sources 230, 271276 (2013)CrossRefGoogle Scholar
Rahman, F. and Skyllas-Kazacos, M., J. Power Sources 189, 12121219 (2009)CrossRefGoogle Scholar
Vijayakumar, M., Wang, W., Nie, Z., Sprenkle, V., and Hu, J., J. Power Sources 241, 173-177 (2013)CrossRefGoogle Scholar
Prifti, H., Parasuraman, A., Winardi, S., Lim, T.M., and Skyllas-Kazacos, M., Membranes 2, 275306 (2012)CrossRefGoogle ScholarPubMed
Bourke, A., Lynch, R. P., and Buckley, D.N., ECS Trans. 64, 117 (2015)CrossRefGoogle Scholar
Bourke, A., Quill, N., Lynch, R.P., and Buckley, D.N., ECS Trans. 61, 1526 (2014)CrossRefGoogle Scholar
Bourke, A., Quill, N., Lynch, R.P., and Buckley, D.N., Book of Conference Papers, The International Flow Battery Forum 2014 (IFBF, Hamburg, Germany, 2014), p. 16.Google Scholar
Zhang, J., Li, L., Nie, Z., Chen, B., Vijayakumar, M., Kim, S., Wang, W., Schwnezer, B., Liu, J., and Yang, Z., J. Appl. Electrochem. 41, 12151221 (2011)CrossRefGoogle Scholar
Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed. (National Association of Corrosion Engineers, Houston, 1974)Google Scholar
Wen, Y., Xu, Y., Cheng, J., Cao, G., and Yang, Y., Electrochim. Acta 96, 268273 (2013)CrossRefGoogle Scholar
Kazacos, M., Cheng, M., and Skyllas-Kazacos, M., J. Appl. Electrochem. 20, 463467 (1990)CrossRefGoogle Scholar
Skyllas-Kazacos, M., Menictas, C., and Kazacos, M., J. Electrochem. Soc. 143, L86L88 (1996)CrossRefGoogle Scholar
Vijayakumar, M., Li, L., Graff, G., Liu, J., Zhang, H., Yang, Z., and Hu, J. Z., J. Power Sources 196, 36693672 (2011)CrossRefGoogle Scholar
Skyllas-Kazacos, M., Rychcik, M., Robins, R. G., Fane, A. G., and Green, M. A., J. Electrochem. Soc. 133, 10571058 (1986)CrossRefGoogle Scholar
Skyllas-Kazacos, M., and Kazacos, M., U.S. Patent No. 6562514, (13 May 2003)Google Scholar
Oboroceanu, D., Quill, N., Lenihan, C., Ní Eidhin, D., Albu, S.P., Lynch, R.P., and Buckley, D.N., J. Electrochem. Soc. 163, A2919A2921 (2016)CrossRefGoogle Scholar
Oboroceanu, D., Quill, N., Lenihan, C., Ní Eidhin, D., Albu, S.P., Lynch, R.P., and Buckley, D.N., ECS Trans. 75 (18), 4963 (2017)CrossRefGoogle Scholar
Oboroceanu, D., Quill, N., Lenihan, C., Ní Eidhin, D., Albu, S.P., Lynch, R.P., and Buckley, D.N., MRS Advances 2, 11771182 (2017)CrossRefGoogle Scholar
Oboroceanu, D., Quill, N., Lenihan, C., Ní Eidhin, D., Albu, S.P., Lynch, R.P., and Buckley, D.N., J. Electrochem. Soc., 164, A2101A2109 (2017)CrossRefGoogle Scholar