Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T14:46:45.837Z Has data issue: false hasContentIssue false

Electric Transport Characteristics of Gallium Iron Oxide Epitaxial Thin Film

Published online by Cambridge University Press:  18 May 2017

Tsukasa Katayama*
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
Shintaro Yasui
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
Yosuke Hamasaki
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
Mitsuru Itoh
Affiliation:
Laboratory for Materials and Structures, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
*
Get access

Abstract

A Ga0.8Fe1.2O3 epitaxial thin film was fabricated on a SrTiO3(111) substrate using pulsed laser deposition. The film is c-axis-oriented and has multiple in-plane domains. In-plane magnetization measurements show that it exhibits ferrimagnetic behavior with a Curie temperature (TC) of 290 K. The insulating film exhibits hopping conduction with a resistivity (ρ) of 4 × 105 Ωcm at 300 K. The ρ value is four orders lower than that of a BiFeO3 film, probably owing to the formation of multiple in-plane domains in the Ga0.8Fe1.2O3 film. Positive magnetoresistance with a maximum value of 3.5% near TC was observed, suggesting that antiferromagnetic interaction between Fe3+ ions decreases carrier transfer between the ions.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gajek, M., Bibes, M., Fusil, S., Bouzehouane, K., Fontcuberta, J., Barthélémy, A. and Fert, A., Nat. Mater. 6, 296 (2007).CrossRefGoogle Scholar
Seidel, J., Martin, L. W., He, Q., Zhan, Q., Chu, Y.-H., Rother, A., Hawkridge, M. E., Maksymovych, P., Yu, P., Gajek, M., Balke, N., Kalinin, S. V., Gemming, S., Wang, F., Catalan, G., Scott, J. F., Spaldin, N. A., Orenstein, J. and Ramesh, R., Nat. Mater. 8, 229 (2009).CrossRefGoogle Scholar
Jiang, A. Q., Wang, C., Jin, K. J., Liu, X. B., Scott, J. F., Hwang, C. S., Tang, T. A., Lu, H. B. and Yang, G. Z., Adv. Mater. 23, 1277 (2011).CrossRefGoogle Scholar
Arima, T., Higashiyama, D., Kaneko, Y., He, J. P., Goto, T., Miyasaka, S., Kimura, T., Oikawa, K., Kamiyama, T., Kumai, R. and Tokura, Y., Phys. Rev. B 70, 064426 (2004).CrossRefGoogle Scholar
Trassin, M., Viart, N., Versini, G., Barre, S., Pourroy, G., Lee, J., Jo, W., Dumesnil, K., Dufourc, C. and Robert, S., J. Mater. Chem. 19, 8876 (2009).CrossRefGoogle Scholar
Mukherjee, S., Roy, A., Auluck, S., Prasad, R., Gupta, R. and Gard, A., Phys. Rev. Lett. 111, 087601 (2013).CrossRefGoogle Scholar
Oh, S. H., Lee, J. H., Shin, R. H., Shin, Y., Meny, C. and Jo, W., Appl. Phys. Lett. 106, 142902 (2015).CrossRefGoogle Scholar
Gich, M., Fina, I., Morelli, A., Sánchez, F., Alexe, M., Gàzquez, J., Fontcuberta, J. and Roig, A., Adv. Mater. 26, 4645 (2014).CrossRefGoogle Scholar
Hamasaki, Y., Shimizu, T., Taniguchi, H., Taniyama, T., Yasui, S. and Itoh, M., Appl. Phys. Lett. 104, 082906 (2014).CrossRefGoogle Scholar
Chakraborty, K. R., Deshpande, S. K., Meena, S. S., Grover, V., Paulose, P. L., Tyagi, A. K. and Yusuf, S. M., J. Magn. Magn. Mater. 417, 165 (2016).CrossRefGoogle Scholar
Naik, V. B. and Mahendiran, R., J. Appl. Phys. 106, 123910 (2009).CrossRefGoogle Scholar
Taskin, A. A., Lavrov, A. N. and Ando, Y., Phys. Rev. B 71, 134414 (2005).CrossRefGoogle Scholar
Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M. and Ramesh, R., Science 299, 1719 (2003).CrossRefGoogle Scholar