Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T09:17:18.176Z Has data issue: false hasContentIssue false

Efficient Approaches on Photochemical CO2 Reduction to Alcohol by Solar Light with Functional Multi-layered Membrane Catalysts

Published online by Cambridge University Press:  02 May 2018

Myung Jong Kang*
Affiliation:
Korea Center for Artificial Photosynthesis, Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
Young Soo Kang*
Affiliation:
Korea Center for Artificial Photosynthesis, Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
*
Get access

Abstract

Simple and efficient approach for artificial photosynthesis of CO2 reduction into ethanol with flexible functional multi-layered membrane catalysts is suggested. The g-C3N4 and BiVO4 particle were synthesized by self-condensation and hydrothermal method. g-C3N4 membrane catalyst and g-C3N4/BiVO4 layered membrane catalyst were fabricated by casting and shaping of Nafion polymer mixture. XRD, FT-IR and XPS analyses proved that the intrinsic properties of g-C3N4 and BiVO4 were maintained after fabricating flexible functional multi-layered membrane catalyst. The interfacial contact between g-C3N4 and BiVO4 particles in flexible membrane catalyst for efficient transport of photogenerated electron was revealed by TEM and photoelectrochemical analysis. Finally, photochemical CO2 reduction reaction was performed with flexible functional multi-layered membrane catalysts. The g-C3N4 membrane catalysts produced 147 μM of ethanol during 12 hrs of CO2 reduction reaction while the g-C3N4/BiVO4 layered membrane catalysts produced 256 μM of ethanol during 12 hrs of CO2 reduction reaction. This is due to the higher solar light harvesting and efficient hole-charge separation from functional multi-layered BiVO4 membrane catalyst leading to the higher electron transport rate to g-C3N4 membrane catalysts, promoting the CO2 reduction reaction on the surface of g-C3N4 membrane catalyst.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Fujishima, A. and Honda, K., Nature 238, 3738 (1972).CrossRefGoogle Scholar
Graetzel, M., Acc. Chem. Res. 14, 376384 (1981).CrossRefGoogle Scholar
Kudo, A. and Miseki, Y., Chem. Soc. Rev. 38, 253278 (2009).CrossRefGoogle Scholar
Tachibana, Y., Vayssieres, L. and Durrant, J.R., Nature Photonics 6, 511518 (2012).CrossRefGoogle Scholar
Khan, S.U.M., Al-Shahry, M. and Ingler, W.B., Science 297, 22432245 (2002).CrossRefGoogle Scholar
Kim, C.W., Yeob, S.J., Cheng, H.-M. and Kang, Y.S., Energy Environ. Sci. 8, 36463653 (2015).CrossRefGoogle Scholar
Park, J.H., Kim, S. and Bard, A.J., Nano Lett. 6, 2428 (2006).CrossRefGoogle Scholar
Chen, H.M., Chen, C.K., Chang, Y.C., Tsai, C.W., Liu, R.S., Hu, S.F., Chang, W.S. and Chen, K.H., Angew. Chem. 122, 61026105 (2010).CrossRefGoogle Scholar
Pawar, A.U., Kim, C.W., Kang, M.J. and Kang, Y.S., Nano Energy 20, 156167 (2016).CrossRefGoogle Scholar
Yang, X., Wolcott, A., Wang, G., Sobo, A., Fitzmorris, R.C., Qian, F., Zhang, J.Z. and Li, Y., Nano Lett. 9, 23312336 (2009).CrossRefGoogle Scholar
Kim, C.W., Son, Y.S., Kang, M.J., Kim, D.Y. and Kang, Y.S., Adv. Ener. Mater. 6, 1501754 (2016).CrossRefGoogle Scholar
Kim, T.W. and Choi, K.-S., Science 343, 990994 (2014).CrossRefGoogle Scholar
Kayes, B.M., Nie, H., Twist, R., Spruytte, S.G., Reinhardt, F., Kizilyalli, I.C. and Higashi, G.S.: 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, in 2011 37th IEEE Photovoltaic Specialists Conference (2011), pp. 48.Google Scholar
Khaselev, O. and Turner, J.A., Science 280, 425427 (1998).CrossRefGoogle Scholar
Sivula, K., Formal, F.L. and Grätzel, M., Chem. Mater. 21, 28622867 (2009).CrossRefGoogle Scholar
Su, J., Guo, L., Bao, N. and Grimes, C.A., Nano Lett. 11, 19281933 (2011).CrossRefGoogle Scholar
Zheng, J.Y., Haider, Z., Van, T.K., Pawar, A.U., Kang, M.J., Kim, C.W. and Kang, Y.S., CrystEngComm 17, 60706093 (2015).CrossRefGoogle Scholar
Sathish, M., Viswanathan, B. and Viswanath, R.P., Int. J. Hydrogen Energy 31, 891898 (2006).CrossRefGoogle Scholar
Xu, Y., Zhao, W., Xu, R., Shi, Y. and Zhang, B., Chem. Commun. 49, 98039805 (2013).CrossRefGoogle Scholar
Kim, J.H., Jang, J.-W., Jo, Y.H., Abdi, F.F., Lee, Y.H., van de Krol, R. and Lee, J.S., Nature Comm. 7, 13380 (2016).CrossRefGoogle Scholar
Singh, M.R., Clark, E.L. and Bell, A.T., PNAS 112, E6111E6118 (2015).CrossRefGoogle Scholar
Kim, C.W., Kang, M.J., Ji, S. and Kang, Y.S., ACS Catal. 8, 968974 (2018).CrossRefGoogle Scholar
Kong, Q., Kim, D., Liu, C., Yu, Y., Su, Y., Li, Y. and Yang, P., Nano Lett. 16, 56755680 (2016).CrossRefGoogle Scholar
Wang, S. and Wang, X., Appl. Catal., B: Environ. 162, 494500 (2015).CrossRefGoogle Scholar
Xu, Y.-F., Yang, M.-Z., Chen, B.-X., Wang, X.-D., Chen, H.-Y., Kuang, D.-B. and Su, C.-Y., J. Am. Chem. Soc. 139, 56605663 (2017).CrossRefGoogle Scholar
Li, H., Gao, Y., Zhou, Y., Fan, F., Han, Q., Xu, Q., Wang, X., Xiao, M., Li, C. and Zou, Z., Nano Lett. 16, 55475552 (2016).CrossRefGoogle Scholar
Li, H., Tu, W., Zhou, Y. and Zou, Z., Adv. Sci. 3, 1500389 (2016).CrossRefGoogle Scholar
Ye, S., Wang, R., Wu, M.-Z. and Yuan, Y.-P., Appl. Surf. Sci. 358, 1527 (2015).CrossRefGoogle Scholar
Paddison, S.J. and Paul, R., PCCP 4, 11581163 (2002).CrossRefGoogle Scholar
Maiti, J., Kakati, N., Woo, S.P. and Yoon, Y.S., Compos. Sci. Technol. 155, 189196 (2018).CrossRefGoogle Scholar
Huang, L., Li, Y., Xu, H., Xu, Y., Xia, J., Wang, K., Li, H. and Cheng, X., RSC Adv. 3, 2226922279 (2013).CrossRefGoogle Scholar
Barton, E.E., Rampulla, D.M. and Bocarsly, A.B., J. Am. Chem. Soc. 130, 63426344 (2008).CrossRefGoogle Scholar
Jeong, H., Kang, M.J., Jung, H. and Kang, Y.S., Faraday Discuss. 198, 409418 (2017).CrossRefGoogle Scholar
Gan, J., Lu, X., Rajeeva, B.B., Menz, R., Tong, Y. and Zheng, Y., ChemElectroChem 2, 13851395 (2015).CrossRefGoogle Scholar
Shen, L., Xing, Z., Zou, J., Li, Z., Wu, X., Zhang, Y., Zhu, Q., Yang, S. and Zhou, W., Scientific Reports 7, 41978 (2017).CrossRefGoogle Scholar
Ma, T.Y., Dai, S., Jaroniec, M. and Qiao, S.Z., Angew. Chem. 126, 74097413 (2014).CrossRefGoogle Scholar
Yang, H., Zhang, S., Cao, R., Deng, X., Li, Z. and Xu, X., Sci. Rep. 7, 8686 (2017).CrossRefGoogle Scholar