Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-09T15:50:29.720Z Has data issue: false hasContentIssue false

Effects of Surface Doping of Si Absorbers on the Band Alignment and Electrical Performance of TiO2-Based Electron-Selective Contacts

Published online by Cambridge University Press:  19 March 2019

Hyunju Lee*
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya468-8511, Japan
Takefumi Kamioka
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya468-8511, Japan
Noritaka Usami
Affiliation:
Graduate School of Engineering, Nagoya University, Nagoya464-8603, Japan
Yoshio Ohshita
Affiliation:
Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya468-8511, Japan
*
Get access

Abstract

We have investigated the chemical and electrical properties of a thin SiO2/TiO2 stacking layer deposited on n-Si and heavily phosphorus-doped n++ Si substrates to elucidate effects of phosphorus doping of Si absorbers on the band alignment and electrical performance of a SiO2/TiO2 stack-based electron-selective contact deposited on the differently doped Si substrates. From our XPS study, we show a shift of the TiO2 energy levels up to ∼0.13 eV with respect to those of Si as the doping level of Si substrates changes. We also show that the conduction band offset of the SiO2/TiO2 stacking layer at the interface with the n++ Si substrate seems to smaller than that of the SiO2/TiO2 stacking layer at the interface with n-Si substrate. Finally, from our electrical transport measurements, we could conclude that the thinner tunneling barrier, the increased electron density in front of the SiO2 layer in the n++ Si surface, and/or the reduced barrier height by heavy doping, seem to enhance the majority electron transport property of the SiO2/TiO2/n++ Si samples compared to that of the SiO2/TiO2/n-Si samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Melskens, J., van de Loo, B. W. H., Macco, B., Black, L. E., Smit, S., and Kessels, W. M. M., IEEE J. Photovolt. 8, 373 (2018).CrossRefGoogle Scholar
Black, L.E., van de Loo, B.W.H., Macco, B., Melskens, J., Berghuis, W.J.H., and Kessels, W.M.M., Sol. Energy Mater. Sol. Cells 188, 182 (2018).CrossRefGoogle Scholar
Elumalai, N.K., Vijila, C., Jose, R., Uddin, A., and Ramakrishna, S., Mater. Renewable Sustainable Energy 4, 1 (2015).Google Scholar
Yang, X., Weber, K., Hameiri, Z., and De Wolf, S., Prog. Photovolt: Res. Appl. 25, 896 (2017).CrossRefGoogle Scholar
Yang, X., Bi, Q., Ali, H., Davis, K., Schoenfeld, W. V., and Weber, K., Adv. Mater. 28, 5891 (2016).CrossRefGoogle Scholar
Yang, X., Zheng, P., Bi, Q., and Weber, K., Sol. Energy Mater. Sol. Cells 150, 32 (2016).CrossRefGoogle Scholar
Allen, T. G., Bullock, J., Jeangros, Q., Samundsett, C., Wan, Y., Cui, J., Hessler‐Wyser, A., De Wolf, S., Javey, A., and Cuevas, A., Adv. Energy Mater. 7, 1602606 (2017).CrossRefGoogle Scholar
Bullock, J., Wan, Y., Hettick, M., Zhaoran, X., Phang, S. P., Yan, D., Wang, H., Ji, W., Samundsett, C., Hameiri, Z., Macdonald, D., Cuevas, A., and Javey, A., Adv. Energy Mater. 9, 1803367 (2019).CrossRefGoogle Scholar
Cho, J., Melskens, J., Debucquoy, M., Recaman Payo, M., Jambaldinni, S., Bearda, T., Gordon, I., Szlufcik, J., Kessels, W. M. M., and Poortmans, J., Prog. Photovolt: Res. Appl. 26, 835 (2018).CrossRefGoogle Scholar
Gerling, L. G., Mahato, S., Morales-Vilches, A., Masmitja, G., Ortega, P., Voz, C., Alcubilla, R., and Puigdollers, J., Sol. Energy Mater. Sol. Cells 145, 109 (2016).CrossRefGoogle Scholar
Geissbühler, J., Werner, J., Martin de Nicolas, S., Barraud, L., Hessler-Wyser, A., Despeisse, M., Nicolay, S., Tomasi, A., Niesen, B., De Wolf, S., and Ballif, C., Appl. Phys. Lett. 107, 81601 (2015).CrossRefGoogle Scholar
Battaglia, C., Yin, X., Zheng, M., Sharp, I. D., Chen, T., McDonnell, S., Azcatl, A., Carraro, C., Maboudian, R., Wallace, R. M., and Javey, A., Nano Lett . 14, 967 (2014).CrossRefGoogle Scholar
Peibst, R., Römer, U., Larionova, Y., Rienäcker, M., Merkle, A., Folchert, N., Reiter, S., Turcu, M., Min, B., Krügener, J., Tetzlaff, D., Bugiel, E., Wietler, T., and Brendel, R., Sol. Energy Mater. Sol. Cells 158, 60 (2016).CrossRefGoogle Scholar
Bivour, M., “Silicon heterojunction solar cells: Analysis and basic understanding,” Ph.D. dissertation, Fraunhofer IRB-Verlag, Fraunhofer-Institut für Solare Energiesysteme, Freiburg, Germany, 2016Google Scholar
Matsui, T., Bivour, M., Ndione, P., Hettich, P., and Hermle, M., Energy Procedia 124, 628 (2017).CrossRefGoogle Scholar
Kraut, E., Grant, R., Waldrop, J., and Kowalczyk, S., Phys. Rev. Lett. 44, 1620 (1980).CrossRefGoogle Scholar
Perego, M., Seguini, G., Scarel, G., Fanciulli, M., and Wallrapp, F., J. Appl. Phys. 103, 043509 (2008).CrossRefGoogle Scholar
Nowotny, J., Bak, T., Nowotny, M.K., and Sheppard, L.R., Int. J. Hydrogen Energy 32, 2630 (2007).CrossRefGoogle Scholar
Avasthi, S., McClain, W.E., Man, G., Kahn, A., Schwartz, J., and Sturm, J.C., Appl. Phys. Lett. 102, 203901 (2013).Google Scholar
Nagamatsu, K., Avasthi, S., Sahasrabudhe, G., Man, G., Jhaveri, J., Berg, A., Schwartz, J., Kahn, A., Wagner, S., and Sturm, J.C., Appl. Phys. Lett. 106, 123906 (2015).CrossRefGoogle Scholar
Tsu, R. and Esaki, L., Appl. Phys. Lett. 22, 562 (1973).CrossRefGoogle Scholar