Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T00:49:10.189Z Has data issue: false hasContentIssue false

Effects of 250 MeV Au-ion Irradiation on the Superconducting Properties of Ba1−xKxFe2As2 Single Crystals

Published online by Cambridge University Press:  08 June 2016

Laura Gozzelino*
Affiliation:
Department of Applied Science and Technology, Politecnico di Torino, I-10129 Torino, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino, Italy
Roberto Gerbaldo
Affiliation:
Department of Applied Science and Technology, Politecnico di Torino, I-10129 Torino, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino, Italy
Gianluca Ghigo
Affiliation:
Department of Applied Science and Technology, Politecnico di Torino, I-10129 Torino, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino, Italy
Francesco Laviano
Affiliation:
Department of Applied Science and Technology, Politecnico di Torino, I-10129 Torino, Italy Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino, Italy
Tsuyoshi Tamegai
Affiliation:
Department of Applied Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
*
Get access

Abstract

In this work, we present an approach towards achieving a detailed knowledge on the effects of irradiation in iron-based superconductors with high-energy heavy ions. Ba1−xKxFe2As2 single crystals (x = 0.42) were irradiated with 250 MeV Au-ions. The crystals were shaped to be thin plates with thickness lower than the ion implantation depth and bases perpendicular to the c-axis. By means of the quantitative magneto-optical imaging technique we attained the local current density in pristine and irradiated sample regions without any model assumption. After irradiation a strong critical current density (Jc) enhancement was measured, overcoming a factor 3 at T = 4 K with an irradiation fluence φ = 9.7 × 109 cm-2. Moreover, correlating point by point Jc and induction magnetic field maps, a contribution of the Au-ion induced defects to the anisotropic out of plane pinning (i.e. pinning in the direction parallel to the ion path) turned up. This contribution shows a maximum at applied fields quite lower than the nominal dose equivalent field. Furthermore, the temperature dependence of the penetration depth was evaluated before and after high-fluence irradiations by investigating the high-frequency behavior of these crystals using a microwave coplanar resonator technique. Fitting the experimental curves with a power law, we found a decrease of the power exponent, more pronounced at the higher fluences, that can supports the s± wave model.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kirk, M.A., Cryogenics 33, 235 (1993); M.A. Kirk and Y. Yan, Micron 30, 507(1999).Google Scholar
Giapintzakis, J., Lee, W. C., Rice, J. P., Ginsberg, D. M., Robertson, I. M., Wheeler, R., Kirk, M. A., and Ruault, M.-O., Phys. Rev. B 45, 10677 (1992).Google Scholar
van der Beek, C. J., Demirdiş, S., Colson, D., Rullier-Albenque, F., Fasano, Y., Shibauchi, T., Matsuda, Y., Kasahara, S., Gierlowski, P., and Konczykowski, M., J. Phys.: Conf. Series 449, 012023 (2013).Google Scholar
Chudy, M., Eisterer, M., Weber, H. W., Veterníková, J., Sojak, S., and Slugeň, V., Supercond. Sci. Technol. 25, 075017 (2012).Google Scholar
Eisterer, M., Weber, H. W., Jiang, J., Weiss, J. D., Yamamoto, A., Polyanskii, A. A., Hellstrom, E. E., and Larbalestier, D. C., Supercond. Sci. Technol. 22, 065015 (2009).CrossRefGoogle Scholar
Civale, L., Marwick, A.D., Worthington, T.K., Kirk, M.A., Thompson, J.R., Krusin-Elbaum, L., Sun, Y., Clem, J.R., and Holtzberg, F., Phys. Rev. Lett. 67, 648 (1991).Google Scholar
Tamegai, T, Taen, T., Yagyuda, H., Tsuchiya, Y., Mohan, S., Taniguchi, T., Nakajima, Y., Okayasu, S., Sasase, M., Kitamura, H., Murakami, T., Kambara, T., and Kanai, Y., Supercond. Sci. Technol. 25, 084008 (2012).Google Scholar
Krusin-Elbaum, L., Thompson, J.R., Wheeler, R., Marwick, A.D., Li, C., Patel, S., Shaw, D.T., Lisowski, P., and Ullmann, D.T., Appl. Phys. Lett. 64, 3331 (1994).Google Scholar
Blamire, M.G., Kang, D.J., Burnell, G., Peng, N.H., Webb, R., Jeynes, C., Yun, J.H., Moon, S.H., and Oh, B., Vacuum 69, 11 (2003).Google Scholar
Lang, W., and Pedarnig, J. D., “Ion Irradiation of High-Temperature superconductors and its application for nanopatterning,” Nanoscience and Engineering in Superconductivity, ed. Moshchalkov, V., Wördenweber, R. and Lang, W. (Springer Berlin Heidelberg Publisher, 2010), pp. 81104.Google Scholar
Civale, L., Supercond. Sci. Technol. 10, A11 (1997).Google Scholar
Mezzetti, E., Gerbaldo, R., Ghigo, G., Gozzelino, L., Minetti, B., and Cherubini, R., J. Appl. Phys. 82, 6122 (1997).CrossRefGoogle Scholar
Laviano, F., Botta, D., Chiodoni, A., Gerbaldo, R., Ghigo, G., Gozzelino, L., and Mezzetti, E. Phys. Rev. B 68, 014507 (2003).Google Scholar
Pallecchi, I., Ferrando, V., Tarantini, C., Putti, M., Ferdeghini, C., Zhu, Y., Voyles, P. M., and Xi, X. X., Supercond. Sci. Technol. 22, 015023 (2009).CrossRefGoogle Scholar
Haberkorn, N., Maiorov, B., Usov, I. O., Weigand, M., Hirata, W., Miyasaka, S., Tajima, S., Chikumoto, N., Tanabe, K., and Civale, L., Phys. Rev. B 85, 014522 (2012).Google Scholar
Fang, L., Jia, Y., Mishra, V., Chaparro, C., Vlasko-Vlasov, V.K., Koshelev, A.E., Welp, U., Crabtree, G.W., Zhu, S., Zhigadlo, N.D., Katrych, S., Karpinski, J., and Kwok, W.K., Nature Commun. 4, 2655 (2013).Google Scholar
Laviano, F., Gerbaldo, R., Ghigo, G., Gozzelino, L., Mikitik, G. P., Taen, T., and Tamegai, T., Supercond. Sci. Technol. 27, 044014 (2014).Google Scholar
Sun, Y., Pyon, S., Tamegai, T., Kobayashi, R., Watashige, T., Kasahara, S., Matsuda, Y., Shibauchi, T., and Kitamura, H., Appl. Phys. Express 8, 113102 (2015).Google Scholar
Mezzetti, E., Gerbaldo, R., Ghigo, G., Gozzelino, L., and Gherardi, L., Phys. Rev. B 59, 3890 (1999).Google Scholar
Fuchs, G., Nenkov, K., Krabbes, G., Weinstein, R., Gandini, A., Sawh, R., Mayes, B., and Parks, D., Supercond. Sci. Technol. 20, S197 (2007).Google Scholar
Matsushita, T., Isobe, G., Kimura, K., Kiuchi, M., Okayasu, S., and Prusseit, W., Supercond. Sci. Technol. 21, 054014 (2008).Google Scholar
Ghigo, G., Andreone, D., Botta, D., Chiodoni, A., Gerbaldo, R., Gozzelino, L., Laviano, F., Minetti, B., and Mezzetti, E, Supercond. Sci. Technol. 18, 193 (2005).Google Scholar
Putti, M., Braccini, V., Ferdeghini, C., Gatti, F., Grasso, G., Manfrinetti, P., Marré, D., Palenzona, A., Pallecchi, I., and Tarantini, C., Appl. Phys. Lett. 86, 112503 (2005).Google Scholar
Gandini, A., Weinstein, R., Parks, D., Sawh, R. P., and Dou, S. X., IEEE Trans. Appl. Supercond. 13, 2934 (2003).Google Scholar
Gozzelino, L., Botta, D., Cherubini, R., Chiodoni, A., Gerbaldo, R., Ghigo, G., Laviano, F., Minetti, B., and Mezzetti, E., Eur. Phys. J. B 40, 3 (2004).Google Scholar
Basset, M., Jakob, G., Wirth, G., and Adrian, H., Phys. Rev. B. 64, 024525 (2001).Google Scholar
Kwok, W.K., Olsson, R.J., Karapetrov, G., Welp, U., Vlasko-Vlasov, V., Kadowaki, K., and Crabtree, G.W., Physica C 382, 137 (2002).Google Scholar
Laviano, F., Gerbaldo, R., Ghigo, G., Gozzelino, L., Minetti, B., and Mezzetti, E., Appl. Phys. Lett. 89, 082514 (2006).Google Scholar
Pedarnig, J.D., Siraj, K., Bodea, M.A., Puica, I., Lang, W., Kolarova, R., Bauer, P., Haselgrübler, K., Hasenfuss, C., Beinik, I., and Teichert, C., Thin Solid Films 518, 7075 (2010).Google Scholar
Laviano, F., Ghigo, G., Mezzetti, E., Hollmann, E., and Wördenweber, R, Physica C 470, 844 (2010).CrossRefGoogle Scholar
Gerbaldo, R., Ghigo, G., Gozzelino, L., Laviano, F., Lopardo, G., Minetti, B., Mezzetti, E., Cherubini, R., and Rovelli, A., J Appl. Phys. 104, 063919 (2008).Google Scholar
Laviano, F., Gerbaldo, R., Ghigo, G., Gozzelino, L., Minetti, B., Rovelli, A., and Mezzetti, E., IEEE Sensors 10, 863 (2010).Google Scholar
Nakajima, Y., Taen, T., Tsuchiya, Y., Tamegai, T., Kitamura, H., and Murakami, T., Phys. Rev. B 82, 220504 (2010).Google Scholar
Cho, K., Kónczykowski, M., Murphy, J., Kim, H., Tanatar, M. A., Straszheim, W. E., Shen, B., Wen, H. H., and Prozorov, R., Phys. Rev. B 90, 104514 (2014).CrossRefGoogle Scholar
Mizukami, Y., Konczykowski, M., Kawamoto, Y., Kurata, S., Kasahara, S., Hashimoto, K., Mishra, V., Kreisel, A., Wang, Y., Hirschfeld, P.J., Matsuda, Y., and Shibauchi, T., Nature Commun. 5, 5657 (2014).Google Scholar
Laviano, F., Botta, D., Chiodoni, A., Gerbaldo, R., Ghigo, G., Gozzelino, L., Zannella, S., and Mezzetti, E., Supercond. Sci. Technol. 16, 71 (2003).Google Scholar
Ghigo, G., Gerbaldo, R., Gozzelino, L., Laviano, F., and Tamegai, T., IEEE Trans. Appl. Supercond., in press.Google Scholar
Taen, T., Ohtake, F., Pyon, S., Tamegai, T., and Kitamura, H., Supercond. Sci. Technol. 28, 085003 (2015).Google Scholar
Fang, L., Jia, Y., Chaparro, C., Sheet, G., Claus, H., Kirk, M. A., Koshelev, A. E., Welp, U., Crabtree, G. W., Kwok, W. K., Zhu, S., Hu, H. F., Zuo, J. M., Wen, H.-H., and Shen, B., Appl. Phys. Lett. 101, 012601 (2012).Google Scholar
Massee, F., Sprau, P. O., Wang, Y-L., Davis, J. C. S., Ghigo, G., Gu, G. D., and Kwok, W-K., Science Advances 1, e1500033 (2015).Google Scholar
van der Beek, C. J., Konczykowski, M., Li, T. W., Kes, P. H., and Benoit, W., Phys. Rev. B 54, R792 (1996).Google Scholar
Dorosinskii, L.A., Indenbom, M.V., Nikitenko, V.I., Ossip’yan, Y.A., Polyanskii, A.A., and Vlasko-Vlasov, V. K., Physica C 203,149 (1992).Google Scholar
Helseth, L.E., Solovyev, A.G., Hansen, R.W., Il’yashenko, E.I., Baziljevich, M., and Johansen, T.H., Phys. Rev. B 66, 064405 (2002).Google Scholar
Ghigo, G., Laviano, F., Gerbaldo, R., and Gozzelino, L., Supercond. Sci. Technol. 25, 115007 (2012).Google Scholar
Laviano, F., Botta, D., Chiodoni, A., Gerbaldo, R., Ghigo, G., Gozzelino, L., and Mezzetti, E., Phys. Rev. B 68, 014507 (2003).CrossRefGoogle Scholar
Mikitik, G. P. and Brandt, E. H., Phys. Rev. B 62, 6800 (2000); Physica C 437–438, 204(2006).Google Scholar
Nakajima, Y., Taen, T., and Tamegai, T., J. Phys Soc. Jpn. 78, 023702 (2009).Google Scholar
Salovich, N. W., Kim, H., Ghosh, A. K., Giannetta, R. W., Kwok, W., Welp, U., Shen, B., Zhu, S., Wen, H.-H., Tanatar, M. A., and Prozorov, R., Phys. Rev. B 87, 180502(R) (2013).Google Scholar
Taen, T., Ohtake, F., Akiyama, H., Inoue, H., Sun, Y., Pyon, S., and Tamegai, T. Phys. Rev. B 88, 224514 (2013).Google Scholar
Kim, H., Gordon, R. T., Tanatar, M. A., Hua, J., Welp, U., Kwok, W. K., Ni, N., Bud’ko, S. L., Canfield, P. C., Vorontsov, A. B., and Prozorov, R., Phys. Rev. B 82, 060518 (2010).Google Scholar
Hardy, W. N., Bonn, D. A., Morgan, D. C., Liang, Ruixing, and Zhang, Kuan, Phys. Rev. Lett. 70, 3999 (1993).Google Scholar
Vendik, I., Supercond. Sci. Technol. 13, 974 (2000).Google Scholar
Bang, Y., Eur. Phys. Lett. 86, 47001 (2009).Google Scholar
Vorontsov, A. B., Vavilov, M. G., and Chubukov, A. V., Phys. Rev. B 79, 140507 (2009).Google Scholar