No CrossRef data available.
Published online by Cambridge University Press: 15 February 2017
The influence of grain boundaries on the vibrational properties of nanoscale phononic crystals is studied with the help of molecular dynamics simulations. The low-frequency vibrational density of states of phononic crystals made from single crystal and polycrystalline silicon are derived from the simulations. The results show that the presence of grain boundaries leads to an increase of the density of states and a change of its peak structure at low frequencies. Calculations of the band structure of the model systems along one direction reveal that the grain boundaries affect the bands differently and in a non-uniform manner.