Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T11:25:46.840Z Has data issue: false hasContentIssue false

Differences in the Mechanical Properties of Monolayer and Multilayer WSe2/MoSe2

Published online by Cambridge University Press:  01 March 2018

Y. M. Jaques*
Affiliation:
Applied Physics Department, University of Campinas, 13083-859Campinas-SP, Brazil Materials Science and Nanoengineering, Rice University, Houston, Texas77005, USA Center for Computational Engineering & Sciences, University of Campinas, Campinas-SP, Brazil
P. Manimunda
Affiliation:
Bruker Nano Surfaces, Minneapolis, MN, USA
Y. Nakanishi
Affiliation:
Materials Science and Nanoengineering, Rice University, Houston, Texas77005, USA
S. Susarla
Affiliation:
Materials Science and Nanoengineering, Rice University, Houston, Texas77005, USA
C. F. Woellner
Affiliation:
Applied Physics Department, University of Campinas, 13083-859Campinas-SP, Brazil Materials Science and Nanoengineering, Rice University, Houston, Texas77005, USA Center for Computational Engineering & Sciences, University of Campinas, Campinas-SP, Brazil
S. Bhowmick
Affiliation:
Bruker Nano Surfaces, Minneapolis, MN, USA
S. A. S. Asif
Affiliation:
Bruker Nano Surfaces, Minneapolis, MN, USA
D. S. Galvão
Affiliation:
Applied Physics Department, University of Campinas, 13083-859Campinas-SP, Brazil Center for Computational Engineering & Sciences, University of Campinas, Campinas-SP, Brazil
C. S. Tiwary
Affiliation:
Materials Science and Nanoengineering, Rice University, Houston, Texas77005, USA
P. M. Ajayan
Affiliation:
Materials Science and Nanoengineering, Rice University, Houston, Texas77005, USA
*
Get access

Abstract

Transition metal dichalcogenides are 2D structures with remarkable electronic, chemical, optical and mechanical properties. Monolayer and crystal properties of these structures have been extensively investigated, but a detailed understanding of the properties of their few-layer structures are still missing. In this work we investigated the mechanical differences between monolayer and multilayer WSe2 and MoSe2, through fully atomistic molecular dynamics simulations (MD). It was observed that single layer WSe2/MoSe2 deposited on silicon substrates have larger friction coefficients than 2, 3 and 4 layered structures. For all considered cases it is always easier to peel off and/or to fracture MoSe2 structures. These results suggest that the interactions between first layer and substrate are stronger than interlayer interactions themselves. Similar findings have been reported for other nanomaterials and it has been speculated whether this is a universal-like behavior for 2D layered materials. We have also analyzed fracture patterns. Our results show that fracture is chirality dependent with crack propagation preferentially perpendicular to W(Mo)-Se bonds and faster for zig-zag-like defects.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bradley, K., Gabriel, J.-C. P., and Grüner, G., Nano Lett. 3, 1353 (2003).Google Scholar
Fiori, G., Bonaccorso, F., Iannaccone, G., Palacios, T., Neumaier, D., Seabaugh, A., Banerjee, S. K., and Colombo, L., Nature Nano. 9, 768 (2014).Google Scholar
Schwierz, F., Nature Nano. 5, 487 (2010).CrossRefGoogle Scholar
Sun, Y. and Rogers, J. A., Adv. Mater. 19, 1897 (2007).Google Scholar
Johari, P. and Shenoy, V. B., ACS Nano 6, 5449 (2012).Google Scholar
Xia, F., Wang, H., Xiao, D., Dubey, M., and Ramasubramaniam, A., 8, 899 (2014).Google Scholar
Mak, K. F. and Shan, J., Nature Photonics 10, 216 (2016).Google Scholar
Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J., and Hersam, M. C., ACS Nano 8, 1102 (2014).Google Scholar
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., and Strano, M. S., Nature Nano. 7, 699 (2012).Google Scholar
Chhowalla, M., Shin, H. S., Eda, G., Li, L.-J., Loh, K. P., and Zhang, H., Nature Chem. 5, 263 (2013).CrossRefGoogle Scholar
Yun, W. S., Han, S. W., Hong, S. C., Kim, I. G., and Lee, J. D., Phys. Rev. B 85, 33305 (2012).CrossRefGoogle Scholar
Huang, J.-K., Pu, J., Hsu, C.-L., Chiu, M.-H., Juang, Z.-Y., Chang, Y.-H., Chang, W.-H., Iwasa, Y., Takenobu, T., and Li, L.-J., ACS Nano 8, 923 (2014).CrossRefGoogle Scholar
Huang, C., Wu, S., Sanchez, A. M., Peters, J. J. P., Beanland, R., Ross, J. S., Rivera, P., Yao, W., Cobden, D. H., and Xu, X., Nature Mater. 13, 1096 (2014).CrossRefGoogle Scholar
Huang, Y. L., Ding, Z., Zhang, W., Chang, Y.-H., Shi, Y., Li, L.-J., Song, Z., Zheng, Y. J., Chi, D., Quek, S. Y., and Wee, A. T. S., Nano Lett. 16, 3682 (2016).Google Scholar
Mitioglu, A. A., Plochocka, P., del Aguila, Á., Christianen, P. C. M., Deligeorgis, G., Anghel, S., Kulyuk, L., and Maude, D. K., Nano Lett. 15, 4387 (2015).CrossRefGoogle Scholar
Asadi, M., Kim, K., Liu, C., Addepalli, A. V., Abbasi, P., Yasaei, P., Phillips, P., Behranginia, A., Cerrato, J. M., Haasch, R., Zapol, P., Kumar, B., Klie, R. F., Abiade, J., Curtiss, L. A., and Salehi-Khojin, A., Science 353, 467 (2016).Google Scholar
Plimpton, S., J. Comput. Phys. 117, 1 (1995).Google Scholar
Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A., and Skiff, W. M., J. Am. Chem. Soc. 114, 10024 (1992).Google Scholar
Jiang, J.-W. and Zhou, Y.-P., ArXiv:1704.03147 (2017).Google Scholar
Huang, W., Da, H., and Liang, G., J. Appl. Phys. 113, 104304 (2013).Google Scholar
Nosé, S., J. Chem. Phys. 81, 511 (1984).Google Scholar
Hoover, W. G., Phys. Rev. A 31, 1695 (1985).Google Scholar
Izrailev, S. et al. ., in Lecture Notes in Computational Molecular Dynamics: Challenges, Methods, Ideas, edited by Deuflhard, P., Hermans, J., Leimkuhler, B., Mark, A. E., Reich, S., and Skeel, R. D. (Springer-Verlag, Berlin, 1998).Google Scholar
Manimunda, P., Nakanishi, Y., Jaques, Y. M., Susarla, S., Woellner, C. F., Bhowmick, S., Asif, S. A. S., Galvao, D. S., Tiwary, C. S., and Ajayan, P. M., 2D Mater. 4, 45005 (2017).Google Scholar