Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T00:40:59.805Z Has data issue: false hasContentIssue false

Determination of the Forward Dissolution Rate for International Simple Glass in Alkaline Solutions

Published online by Cambridge University Press:  05 January 2017

Alice Elia*
Affiliation:
SCK•CEN, Belgian Nuclear Research Centre, Boeretang 200 - BE-2400 Mol, Belgium
Karine Ferrand
Affiliation:
SCK•CEN, Belgian Nuclear Research Centre, Boeretang 200 - BE-2400 Mol, Belgium
Karel Lemmens
Affiliation:
SCK•CEN, Belgian Nuclear Research Centre, Boeretang 200 - BE-2400 Mol, Belgium
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The International Simple Glass (ISG) is considered as reference benchmark glass and is used in the frame of an international collaboration for the study of the dissolution mechanisms of high-level vitrified nuclear waste.

In this work the forward dissolution rate of the ISG was determined in different alkaline solutions, as a simulation of the disposal conditions foreseen by the Belgian concept for geological disposal of vitrified waste. The determination of the forward dissolution rate was done by measuring the Si released from the glass in solution in tests performed at 30 °C in four different KOH solutions with pH varying from 9 to 14 and in artificial cementitious water at pH 13.5.

The forward dissolution rates determined for the ISG in high pH solutions are in good agreement with the results obtained for a lower pH range.

The rates obtained in this study, moreover, were compared with the rates measured in the same conditions for SON68 glass from a previous work. The values obtained for the two glasses are comparable in artificial cementitious water and in KOH at moderately alkaline pH. At higher pH, ISG glass shows a lower forward dissolution rate with respect to SON68 (0.20 g·m-2·d for ISG and 0.35 g·m-2 d for SON68 at pH 14).

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Materials Research Society 2017

References

REFERENCES

Gin, S., Abdelouas, A., Criscenti, L. J., Ebert, W. L., Ferrand, K., Geisler, T., Harrison, M. T., Inagaki, Y., Mitsui, S., Mueller, K. T., Marra, J. C., Pantano, C. G., Pierce, E. M., Ryan, J. V., Schofield, J. M., Steefel, C. I. and Vienna, J. D., Mater. Today 16, 243248 (2013).Google Scholar
Abdelouas, A., El Mendili, Y., Aït Chaou, A., Karakurt, G., Hartnack, C., Bardeau, J.-F., Saito, T. and Matsuzaki, H., Int. J. Appl. Glass Sci. 4, 307316 (2013).Google Scholar
Ojovan, M.I. and Lee, W.E., Metall. Mater. Trans. A 42, 837851 (2011).Google Scholar
Ferrand, K. and Lemmens, K., Mater. Res. Soc. Symp. Proc. 1107, 287294 (2008).Google Scholar
Inagaki, Y., Kikunaga, T., Idemitsu, K. and Arima, T., Int. J. Appl. Glass Sci. 4, 317327 (2013).Google Scholar
Fournier, M., Frugier, P. and Gin, S., Procedia Materials Science 7, 202208 (2014).CrossRefGoogle Scholar
Zini, Q., Buldini, P.L. and Morettini, L., Microchem. J. 32, 148152 (1985)Google Scholar
Jeong, S.-Y. and Ebert, W. L., Mat. Res. Soc. Symp. Proc. 757, 159165 (2002).Google Scholar
Advocat, T., Crovisier, J. L., Vernaz, E., Ehret, G. and Charpentier, H., Mat. Res. Soc. Symp. Proc. 212, 5764 (1991).Google Scholar
Knauss, K. G., Bourcier, W. L., McKeegan, K. D., Merzbacher, C. I., Nguyen, S. N., Ryerson, F. J., Smith, D. K., Weed, H. C. and Newton, L., Mat. Res. Soc. Symp. Proc. 176, 371382 (1989).Google Scholar
Utton, C. A., Hand, R. J., Bingham, P. A., Hyatt, N. C., Swanton, S. W. and Williams, S. J., J. Nucl. Mater. 435, 112122 (2013).Google Scholar
Hand, R.J., Hyatt, N.C., Swanton, S.W. and Williams, S.J., J. Nucl. Mater. 442, 3345 (2013).Google Scholar
Cassingham, N.J., Heath, P.G., Hyatt, N.C. and Corkhill, C.L., Int. J. Appl. Glass Sci. 4, 341356 (2013).Google Scholar
Swanton, S.W., Schofield, J., Hand, R.J., Clacher, A., Utton, C.A. and Hyatt, N.C., Mineral. Mag. 76, 29192930 (2012).Google Scholar
Grambow, B., Mat. Res. Soc. Symp. Proc. 506, 141152 (1998).Google Scholar
Frugier, P., Gin, S., Minet, Y., Chave, T., Bonin, B., Godon, N., Lartigue, J.E., Jollivet, P., Ayral, A., De Windt, L., and Santarini, G., J. Nucl. Mater. 380, 821 (2008).Google Scholar
Mercado-Depierre, S., Angéli, F., Frizon, F. and Gin, S., J. Nucl. Mater. 441, 402410 (2013).CrossRefGoogle Scholar
Liu, S., Ferrand, K., Lemmens, K., Appl. Geochem. 61, 302311 (2015)Google Scholar
Ferrand, K., Liu, S. and Lemmens, K., Report No. SCK•CEN-ER-297 (2015)Google Scholar
Gin, S., Jollivet, P., Fournier, M., Berthon, C., Wang, Z., Mitroshkov, A., Zhu, Z. and Ryan, J. V., Geochim. Cosmochim. Acta 151, 6885 (2015)Google Scholar