Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T09:52:28.675Z Has data issue: false hasContentIssue false

Comparison of neutral and charged polyelectrolyte bottlebrush polymers in dilute salt-free conditions

Published online by Cambridge University Press:  13 January 2020

Alexandros Chremos*
Affiliation:
Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
Ferenc Horkay
Affiliation:
Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
*
Get access

Abstract

We investigate the structure of neutral and charged bottlebrush polymers in salt-free solutions at different polymer concentrations. In particular, we use molecular dynamics simulations by utilizing a coarse-grained bead-spring model that includes an explicit solvent and complementary experiments made by small angle neutron scattering (SANS). We find that the charged groups along the side chains exert significant repulsive forces, resulting in polymer swelling and backbone stretching. In addition to the primary polyelectrolyte peak, we find that bottlebrush polymers exhibit an additional peak in the form and static structure factors, a feature that is absent in neutral polymers. We show that this additional peak describes the intra-molecular correlations between the charged side chains.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Haugan, I. N., Maher, M. J., Chang, A. B., Lin, T. P., Grubbs, R. H., Hillmyer, M. A., and Bates, F. S., ACS Macro Lett. 7, 525 (2018).CrossRefGoogle Scholar
Miyake, G. M., Weitekamp, R. A., Piunova, V. A., and Grubbs, R. H., J. Am. Chem. Soc. 134, 014249 (2012).CrossRefGoogle Scholar
Daniel, W. F. M., Burdyńska, J., Vatankhah-Varnoosfaderani, M., Matyjaszewski, K., Paturej, J., Rubinstein, M., Dobrynin, A. V., and Sheiko, S. S., Nat. Mater. 15, 183 (2016).CrossRefGoogle Scholar
Chremos, A. and Douglas, J. F., J. Chem. Phys. 149, 044904 (2018).CrossRefGoogle Scholar
Sarapas, J. M., Chan, E. P., Rettner, E. M., and Beers, K. L., Macromolecules 51, 2359 (2018).CrossRefGoogle Scholar
Chremos, A. and Douglas, J. F., Phys. Rev. Lett. 121, 258002 (2018).CrossRefGoogle Scholar
Ng, L., Grodzinsky, A. J., Patwari, P., Sandy, J., Plaas, A., and Ortiz, C., J. Struct. Biol.. 143, 242 (2003).CrossRefGoogle Scholar
Horkay, F., Basser, P. J., Hecht, A.-M., and Geissler, E. J., J. Chem. Phys., 128, 135103 (2008).CrossRefGoogle Scholar
Watanabe, H., Yamada, Y., and Kimata, K., J. Biochem. 124, 687 (1998).CrossRefGoogle Scholar
Basser, P. J., Schneiderman, R., Bank, R. A., Wachtel, E., and Maroudas, A., Arch. Biochem. Biophys. 351, 207 (1998).CrossRefGoogle Scholar
Stevens, M. J. and Kremer, K., J. Chem. Phys. 103, 1669 (1995).CrossRefGoogle Scholar
Liu, S. and Muthukumar, M., J. Chem. Phys. 116, 9975 (2002).CrossRefGoogle Scholar
Ullner, M. and Woodward, C. E., Macromolecules 35, 1437 (2002).CrossRefGoogle Scholar
Lo, T. S., Khusid, B., and Koplik, J., Phys. Rev. Lett. 100, 128301 (2008).CrossRefGoogle Scholar
Chremos, A. and Douglas, J. F., Soft Matter 12, 2932 (2016).CrossRefGoogle Scholar
Chremos, A. and Douglas, J. F., J. Chem. Phys. 144, 164904 (2016).CrossRefGoogle Scholar
Chremos, A. and Douglas, J. F., J. Chem. Phys. 147, 241103 (2017).CrossRefGoogle Scholar
Chremos, A. and Douglas, J. F., J. Chem. Phys. 149, 163305 (2018).CrossRefGoogle Scholar
Chremos, A., Nikoubashman, A., and Panagiotopoulos, A. Z., J. Chem. Phys. 140, 054909 (2014).CrossRefGoogle Scholar
Andreev, M., Chremos, A., de Pablo, J. J., and Douglas, J. F., J. Phys. Chem. B 121, 8195 (2018).CrossRefGoogle Scholar
Andreev, M., de Pablo, J. J., Chremos, A., Douglas, J. F., J. Phys. Chem. B 122, 4029 (2018).CrossRefGoogle Scholar
Lindner, P. J., Appl. Cryst. 33, 807 (2000).CrossRefGoogle Scholar
Paturej, J. and Kreer, T., Soft matter 13, 8534 (2017).CrossRefGoogle Scholar
Mansfield, M. L. and Douglas, J. F., Macromolecules 41, 5422 (2008).CrossRefGoogle Scholar
Mansfield, M. L. and Douglas, J. F., J. Chem. Phys. 139, 044901 (2013).CrossRefGoogle Scholar
López-Barrón, C. R., Tsou, A. H., Younker, J. M., Norman, A. I., Schaefer, J. J., Hagadorn, J. R., and Throckmorton, J. A., Macromolecules 51, 872 (2018).CrossRefGoogle Scholar
Qian, Z., Koh, Y. P., Pallaka, M. R., Chang, A. B., Lin, T. P., Guzmán, P. E., Grubbs, R. H., Simon, S. L., and McKenna, G. B., Macromolecules 52, 2063 (2019).CrossRefGoogle Scholar
Chremos, A. and Douglas, J. F., ACS Symp. Ser 1296, 15 (2018).CrossRefGoogle Scholar
Chremos, A. and Douglas, J., Gels 4, 20 (2018).CrossRefGoogle Scholar