Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T13:51:03.970Z Has data issue: false hasContentIssue false

A comment on the thermal conductivity of (U,Pu)O2 and (U,Th)O2 by molecular dynamics with adjustment for phonon-spin scattering

Published online by Cambridge University Press:  15 July 2016

M. W. D. Cooper*
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory P.O. Box 1663, Los Alamos, NM 87545, USA
C. R. Stanek
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory P.O. Box 1663, Los Alamos, NM 87545, USA
X.-Y. Liu
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory P.O. Box 1663, Los Alamos, NM 87545, USA
D. A. Andersson
Affiliation:
Materials Science and Technology Division, Los Alamos National Laboratory P.O. Box 1663, Los Alamos, NM 87545, USA
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A new approach for adjusting molecular dynamics results on UO2 thermal conductivity to include phonon-spin scattering has been used to improve calculations on U x Pu1−x O2 and U x Th1−x O2. We demonstrate that by including spin scattering a strong asymmetry as a function of uranium actinide fraction, x, is obtained. Greater degradation is shown for U x Th1−x O2 than U x Pu1−x O2. Minimum thermal conductivities are predicted at U0.97Pu0.03O2 and U0.58Th0.42O2, although the degradation in U x Pu1−x O2 is negligible relative to pure UO2.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

References

Popov, S. G., Carbajo, J. J., Ivanov, V. K. and Yoder, G. L., Tech. Rep. ORNL/TM–2000/351 (2000).Google Scholar
Lee, W. E., Gilbert, M., Murphy, S. T. and Grimes, R. W., J. Am. Ceram. Soc. 96 (2013) 20052030.Google Scholar
International Atomic Energy Agency, Tech. Rep. IAEATECDOC-1450 (2005).Google Scholar
Carbajo, J. J., Yoder, G. L., Popov, S. G. and Ivanov, V. K., J. Nucl. Mater. 299 (2001) 181198.Google Scholar
Lyon, W. L. and Baily, W. E., J. Nucl. Mater. 22 (1967) 332339.Google Scholar
Gibby, R. L., J. Nucl. Mater. 38 (1971) 163177.Google Scholar
Bakker, K., Cordfunke, E. H. P., Konings, R. J. M. and Schram, R. P. C., J. Nucl. Mater. 250 (1997) 112.Google Scholar
Cozzo, C., Staicu, D., Somers, J., Fernandez, A. and Konings, R. J. M., (2011) J. Nucl. Mater. 416, 135141.Google Scholar
Fink, J. K. (2000) J. Nucl. Mater. 279, 118.Google Scholar
Gofyk, K., Du, S., Stanek, C. R., Lashley, J. C., Liu, X.-Y., Schulze, R. K., Smith, J. L., Safarik, D. J., Byler, D. D., McClellan, K. J., Uberuaga, B. P., Scott, B. L. and Andersson, D. A., Nat. Commun. 5 (2014) 4551.Google Scholar
Arima, T., Yamasaki, S., Inagaki, Y. and Idemitsu, K., J. Alloys Compd. 400 (2005) 4350.Google Scholar
Arima, T., Yamasaki, S., Inagaki, Y. and Idemitsu, K., J. Alloys Compd. 415 (2006) 4350.Google Scholar
Ma, J.-J., Zheng, J., Wan, M.-J., Du, J.-G., Yang, J. and Jiang, G., J. Nucl. Mater. 452 (2014) 230234.Google Scholar
Ma, J.-J., Du, J.-G., Wan, M.-J. and Jiang, G., J. Alloys Compd. 627 (2015) 476482.Google Scholar
Nichenko, S. and Staicu, D., J. Nucl. Mater. 439 (2013) 9398.Google Scholar
Qin, M. J., Cooper, M. W. D., Kuo, E. Y., Rushton, M. J. D., Grimes, R. W., Lumpkin, G. R. and Middleburgh, S. C., J. Phys. Condens. Matter 26 (2014) 495401.Google Scholar
Watanabe, T., Sinnott, S. B., Tulenko, J. S., Grimes, R. W., Schelling, P. K. and Phillpot, S. R., J. Nucl. Mater. 375 (2008) 388396.Google Scholar
Cooper, M. W. D., Middleburgh, S. C. and Grimes, R. W., J. Nucl. Mater. 466 (2015) 2935.Google Scholar
Cooper, M. W. D., Rushton, M. J.D. and Grimes, R. W., J. Phys. Condens. Matter 26 (2014) 105401.Google Scholar
Liu, X.-Y., Cooper, M. W. D, McClellan, K. J., Lashley, J. C., Byler, D. D., Bell, B. D. C., Grimes, R. W., Stanek, C. R. and Andersson, D. A., Phys. Rev. App. submitted (2016).Google Scholar
Tonks, M. R., Liu, X.-Y., Andersson, D. A., Perez, D., Chernatynskiy, A., Pastore, G., Stanek, C. R. and Williamson, R., J. Nucl. Mater. 469 (2016) 8998.Google Scholar
Callaway, J., Phys. Rev. 113 (1959) 1046.Google Scholar
Cooper, M.W. D., Murphy, S. T., Fossati, P. C. M., Rushton, M. J. D. and Grimes, R. W., Proc. R. Soc. A Math. Phys. Eng. Sci. 470 (2014) 20140427–20140427.Google Scholar
Cooper, M. W. D., Murphy, S. T., Rushton, M. J. D. and Grimes, R. W., J. Nucl. Mater. 461 (2015) 206214.Google Scholar
Abeles, B., Phys. Rev. 131 (1963) 19061911.Google Scholar
Adachi, S., J. App. Phys. 54 (1983) 1844.Google Scholar
Adachi, S., J. App. Phys. 102 (2007) 063502.Google Scholar