Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T08:18:26.526Z Has data issue: false hasContentIssue false

Coherent X-ray diffraction imaging meets ptychography to study core-shell-shell nanowires

Published online by Cambridge University Press:  28 May 2018

A. Davtyan*
Affiliation:
Faculty of science and engineering, University of Siegen, 57068, Siegen, Germany
V. Favre-Nicolin
Affiliation:
ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble CEDEX9 CS-40220, 38043, France
R. B. Lewis
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, Berlin, 10117, Germany
H. Küpers
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, Berlin, 10117, Germany
L. Geelhaar
Affiliation:
Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, Berlin, 10117, Germany
D. Kriegner
Affiliation:
Max Planck Institute for the Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany Department of Condensed Matter Physics, Faculty of Mathematics and Physics,Charles University, Ke Karlovu 5, 121 16 Praha, Czech Republic
D. Bahrami
Affiliation:
Faculty of science and engineering, University of Siegen, 57068, Siegen, Germany
A. Al-Hassan
Affiliation:
Faculty of science and engineering, University of Siegen, 57068, Siegen, Germany
G. Chahine
Affiliation:
ESRF - The European Synchrotron, 71 Avenue des Martyrs, Grenoble CEDEX9 CS-40220, 38043, France
O. Loffeld
Affiliation:
Faculty of science and engineering, University of Siegen, 57068, Siegen, Germany
U. Pietsch
Affiliation:
Faculty of science and engineering, University of Siegen, 57068, Siegen, Germany
*
Get access

Abstract

We report on the results of coherent X-ray diffraction imaging (CXDI) and ptychography measurements of two individual core-shell-shell GaAs/(In,Ga)As/GaAs nanowires (NWs) grown by molecular beam epitaxy (MBE) on patterned Si(111) substrate. CXDI at the axial GaAs 111 Bragg reflection was applied at different positions along the NW axis in order to characterize the NWs in terms of structural homogeneity along the radial directions. At each positon 3D reciprocal space maps have been recoded and inverted using phase retrieval algorithms. The CXDI were complemented by 2D ptychography measurements at GaAs 111 Bragg reflection probing the same NWs with respect to their structural homogeneity. Both methods provide structural homogeneity for NW1 and NW2 except at the bottom part of the NWs. In case of NW2 CXDI and ptychography show changes in the structure of the top part of the NW indicated by 60° rotation of the indicated three-fold rotational symmetry in the observed diffraction patterns and changes in the strain field reconstructed from ptychography.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Salehzadeh, O., Kavanagh, K.L., and Watkins, S.P., Journal of Applied Physics,114(5): p. 054301 (2013.).CrossRefGoogle Scholar
Taraci, J.L., et al., Nanotechnology, 16(10): p. 2365–71 (2005).CrossRefGoogle Scholar
Hytch, M., et al., Nature, 453(7198): p. 1086-U5 (2008).CrossRefGoogle Scholar
Grandal, J., et al., Applied Physics Letters, 105(12) (2014).CrossRefGoogle Scholar
Pfeifer, M.A., et al., Nature, 442(7098): p. 6366 (2006).CrossRefGoogle Scholar
Xiong, G., et al., New Journal of Physics, 13 (2011).Google Scholar
Chahine, G.A., et al., Journal of Applied Crystallography, 47: p. 762769 (2014).CrossRefGoogle Scholar
Leclere, C., et al., Journal of Applied Crystallography, 48: p. 291296 (2015).CrossRefGoogle Scholar
Richard, M.I., et al., Nanoscale, 10(10): p. 48334840 (2018).CrossRefGoogle Scholar
Robinson, I. and Harder, R., Nature Materials, 8(4): p. 291298 (2009).CrossRefGoogle Scholar
Yang, W., et al., Nat Commun, 4: p. 1680 (2013).CrossRefGoogle Scholar
Hofmann, F., et al., Sci Rep, 7: p. 45993 (2017).CrossRefGoogle Scholar
Davtyan, A., et al., Journal of Applied Crystallography, 50: p. 673680 (2017).CrossRefGoogle Scholar
Diaz, A., et al., Physical Review B, 79(12) (2009).CrossRefGoogle Scholar
Labat, S., et al., ACS Nano, 9(9): p. 9210–6 (2015).CrossRefGoogle Scholar
Huang, X.J., et al., Journal of Applied Crystallography, 45: p. 778784 (2012).CrossRefGoogle Scholar
Godard, P., et al., Nat Commun, 2 (2011).CrossRefGoogle Scholar
Dzhigaev, D., et al., ACS Nano, 11(7): p. 66056611 (2017).CrossRefGoogle Scholar
Hill, M.O., et al., Nano Lett, 18(2): p. 811819 (2018).CrossRefGoogle Scholar
Küpers, H., et al., Nano Research, (2018).Google Scholar
Dimakis, E., et al., Nano Lett, 14(5): p. 2604–9 (2014).CrossRefGoogle Scholar
Mandula, O., et al., Journal of Applied Crystallography, 49: p. 18421848 (2016).CrossRefGoogle Scholar
Fienup, J.R., Applied Optics, 21(15): p. 27582769 (1982).CrossRefGoogle Scholar
Marchesini, S., et al., 68(14) (2003).Google Scholar
Dzhigaev, D., et al., Journal of Optics, 18(6) (2016).CrossRefGoogle Scholar
Thibault, P., et al., Ultramicroscopy, 109(4): p. 338343 (2009).CrossRefGoogle Scholar
Thibault, P. and Guizar-Sicairos, M., New Journal of Physics, 14 (2012).CrossRefGoogle Scholar
Newton, M.C., et al., Nature Materials, 9(2): p. 120124 (2010).CrossRefGoogle Scholar
Loren, B., et al., AIP Conference Proceedings, 1234(1): p. 5760 (2010).Google Scholar