Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T16:07:39.641Z Has data issue: false hasContentIssue false

Choice of Polymer Matrix for a Fast Switchable III-V Nanowire Terahertz Modulator

Published online by Cambridge University Press:  03 April 2017

Sarwat A. Baig*
Affiliation:
Department of Engineering, University of Cambridge, Electrical Engineering Building, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
Jessica L. Boland
Affiliation:
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK.
Djamshid A. Damry
Affiliation:
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK.
Hoe H Tan
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
Chennupati Jagadish
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia
Michael B. Johnston
Affiliation:
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK.
Hannah J Joyce
Affiliation:
Department of Engineering, University of Cambridge, Electrical Engineering Building, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
*
Get access

Abstract

Progress in ultrafast terahertz (THz) communications has been limited due to the lack of picosecond switchable modulators with sufficient modulation depth. Gallium arsenide nanowires are ideal candidates for THz modulators as they absorb THz radiation, only when photoexcited – giving the potential for picosecend speed switching and high modulation depth. By embedding the nanowires in a polymer matrix and laminating together several nanowire–polymer films, we increase the areal density of nanowires, resulting in greater modulation of THz radiation. In this paper, we compare PDMS and Parylene C polymers for nanowire encapsulation and show that a high modulation depth is possible using Parylene C due to its thinness and its ability to be laminated. We characterize the modulator behavior and switching speed using optical pump–THz probe spectroscopy, and demonstrate a parylene–nanowire THz modulator with 13.5% modulation depth and 1ps switching speed.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Tonouchi, M., Nat. Photonics. 1, 97 (2007).Google Scholar
Johnston, M. B., Dowd, A., Driver, R., Linfield, E. H., Davies, A. G., and Whittaker, D. M., Semicond. Sci. Technol. 19, S449 (2004).Google Scholar
Peng, K., Parkinson, P., Fu, L., Gao, Q., Jiang, N., Guo, Y., Wang, F., Joyce, H. J., Boland, J. L., Tan, H. H., Jagadish, C., and Johnston, M. B., Nano Lett. 15, 206 (2015).CrossRefGoogle Scholar
Kleine-Ostmann, T. and Nagatsuma, T., J Infrared Milli Terahz Waves. 32, 143 (2011).Google Scholar
Rahm, M., Li, J., and Padilla, W. J., J Infrared Milli Terahz Waves, 34, 1 (2013).Google Scholar
Liang, G., Hu, X., Yu, X., Shen, Y., Li, L. H., Davies, A. G., Linfield, E. H., Liang, H. K., Zhang, Y., Yu, S. F., and Wang, Q. J., ACS Photonics. 2, 1559 (2015).CrossRefGoogle Scholar
Docherty, C. J., Stranks, S. D., Habisreutinger, S. N., Joyce, H. J., Herz, L. M., Nicholas, R. J., and Johnston, M. B., J. Appl. Phys. 115, 13 (2014).Google Scholar
Joyce, H. J., Boland, J. L., Davies, C. L., Joyce, H. J., Docherty, C. J., Gao, Q., and Tan, H. H., Nanotech. 7, 214006 (2013).Google Scholar
Joyce, H. J., Gao, Q., Tan, H. H., Jagadish, C., Kim, Y., Zou, J., Smith, L. M., Jackson, H. E., Yarrison-Rice, J. M., Parkinson, P., and Johnston, M. B., Prog. Quantum Electron. 35, 23 ( 2011).Google Scholar
Parkinson, P., Joyce, H. J., Gao, Q., Tan, H. H., Zhang, X., Zou, J., Jagadish, C., Herz, L. M., and Johnston, M. B., Nano Lett. 9, 1 (2009).Google Scholar
Parkinson, P., Lloyd-hughes, J., Gao, Q., Tan, H. H., Jagadish, C., Johnston, M. B., and Herz, L. M., Nano Lett. 7, 2162 (2007).CrossRefGoogle Scholar
Meng, E., Li, P.-Y., and Tai, Y.-C., J. Micromech. Microeng. 18, 45004, (2008).Google Scholar
Park, H., Seo, K., and Crozier, K. B., Appl. Phys. Lett. 101, 193107 (2012).CrossRefGoogle Scholar
Noh, H., Moon, K., Cannon, A., Hesketh, P. J., and Wong, C. P., J. Micromech. Microeng. 14, 625 (2004).Google Scholar
Joyce, H. J., Parkinson, P., Jiang, N., Docherty, C. J., Gao, Q., Tan, H. H., Jagadish, C., Herz, L. M., and Johnston, M. B., Nano Letts. 14, 5989 (2014).Google Scholar
Joyce, H. J., Boland, J. L., Davies, C. L., Baig, S. A., and Johnston, M. B., Semicond. Sci. Technol. 31,1 (2016).Google Scholar
Titova, L. V, Hoang, T. B., Jackson, H. E., Joyce, L. M. S. M. Y. K. J., Tan, H. H., Jagadish, C., V Titova, L., Hoang, T. B., Jackson, H. E., Smith, L. M., and Kim, Y., Appl. Phys. Lett., 1, 173126 (2006).Google Scholar