Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T08:24:54.114Z Has data issue: false hasContentIssue false

Characterization of Plasma Induced Damage and Strain on InP Patterns and Their Impact on Luminescence

Published online by Cambridge University Press:  21 May 2018

Marc Fouchier*
Affiliation:
Université Grenoble Alpes / CNRS - LTM, France
Maria Fahed
Affiliation:
Université Grenoble Alpes / CNRS - LTM, France
Erwine Pargon
Affiliation:
Université Grenoble Alpes / CNRS - LTM, France
Névine Rochat
Affiliation:
Université Grenoble Alpes / CEA - LETI, France
Jean-Pierre Landesman
Affiliation:
Institut de Physique de Rennes, Université Rennes-1 and CNRS, France
Denis Rouchon
Affiliation:
Université Grenoble Alpes / CEA - LETI, France
Joyce Roque
Affiliation:
Université Grenoble Alpes / CEA - LETI, France
Karine Rovayaz
Affiliation:
Université Grenoble Alpes / CNRS - LTM, France
Eugénie Martinez
Affiliation:
Université Grenoble Alpes / CEA - LETI, France
Sébastien Labau
Affiliation:
Université Grenoble Alpes / CNRS - LTM, France
*
Get access

Abstract

The effect of damage induced by plasma etching on the cathodoluminescence intensity of micron-size InP features is studied. At the etched bottom, it is found that the hard mask stripping process is sufficient to recover the luminescence. Within features, the presence of sidewalls reduces luminescence intensity due to additional non-radiative surface recombinations. For a n-doped sample, a carrier diffusion length of 0.84 μm and a reduced nonradiative surface recombination velocity of 2.58 are calculated. Hydrostatic strain within the etched features is measured using the peak shift of the luminescence signal, while in plane strain anisotropy is obtained from its degree of polarization, both with a resolution of about 100 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hayes, T.R., Chakrabarti, U.K., Baiocchi, F.A., Emerson, A.B., Luftman, H.S., and Dautremont-Smith, W.C., J. Appl. Phys. 68, 785792 (1990).CrossRefGoogle Scholar
Heinbach, M., Kaindl, J., and Franz, G., Appl. Phys. Lett. 67, 20342036 (1995).CrossRefGoogle Scholar
Franz, G. and Averbeck, R. in Proc. of the 5th International Symposium on Plasma Process-Induced Damage (Santa Clara, CA, 2000) pp. 141144.Google Scholar
van der Tol, J.J.G.M., Silova, M., Karouta, F., Broeke, R.G., Tan, H.H., Jagadish, C., Smalbrugge, E., and van Roy, B.H. in Proc. of the 5th Annual Symposium of the IEEE/LEOS Benelux chapter (Delft, The Netherlands, 2000) pp. 127130.Google Scholar
Liu, B., Landesman, J.-P., Leclercq, J.-L., Rhallabi, A., Cardinaud, C., and Guilet, S., Mater. Sci. Semicond. Process. 9, 225229 (2006).CrossRefGoogle Scholar
Chanson, R., Bouchoule, S., Cardinaud, C., Petit-Etienne, C., Cambril, E., Rhallabi, A., Guilet, S., and Blanquet, E., J. Vac. Sci. Technol. B 32, 011219–1-11 (2014).CrossRefGoogle Scholar
Bouchoule, S., Chanson, R., Pageau, A., Cambril, E., Guilet, S., Rhallabi, A., and Cardinaud, C., J. Vac. Sci. Technol. A 33, 05E124-1-11 (2015).CrossRefGoogle Scholar
Ladroue, J., Meritan, A., Boufnichel, M., Lefaucheux, P., Ranson, P., and Dussart, R., J. Vac. Sci. Technol. A 28, 12261233 (2010).CrossRefGoogle Scholar
Ding, R., Klein, L.J., Friesen, M.G., Eriksson, M.A., and Wendt, A.E., J. Vac. Sci. Technol. A 27, 836843 (2009).CrossRefGoogle Scholar
Schilling, J., Talalaev, V., Tonkikh, A., Fuhrmann, B., Heyroth, F., and Otto, M., Appl. Phys. Lett. 103, 161106–1-5 (2013).CrossRefGoogle Scholar
Jang, J.H., Zhao, W., Bae, J.W., and Adesida, I., Lepore, A., Kwakernaak, M., and Abeles, J.H., J. Vac. Sci. Technol. B 22, 25382541 (2004).CrossRefGoogle Scholar
Avella, M., Jiménez, J., Pommereau, F., Landesman, J.P., and Rhallabi, A., Appl. Phys. Lett. 93, 131913–1-3 (2008).CrossRefGoogle Scholar
Chanson, R., Martin, A., Avella, M., Jiménez, J., Pommereau, F., Landesman, J.P., and Rhallabi, A., J. Electron. Mater. 39, 688693 (2010).CrossRefGoogle Scholar
Chang, R.R., Iyer, R., and Lile, D.L., J. Appl. Phys. 61, 1995 (1987).CrossRefGoogle Scholar
Englund, D., Altug, H., and Vučković, J., Appl. Phys. Lett. 91, 071124–1-3 (2007).Google Scholar
Vurgaftman, I., Meyer, J.R., and Ram-Mohan, L.R., J. Appl. Phys. 89, 58155875 (2001).CrossRefGoogle Scholar
Cassidy, D.T., Hall, C.K., Rehioui, O., and Bechou, L., Microelectron. Reliab. 50, 462466 (2010).CrossRefGoogle Scholar
Rosenwaks, Y., Shapira, Y., and Huppert, D., Phys. Rev. B 45, 91089119 (1992).CrossRefGoogle Scholar
Yater, J.A., Weinberg, I., Jenkins, P.P., Landis, G.A. in Proc. of IEEE 1st World Conference on Photovoltaic Energy Conversion (Waikoloa, HI, 1994) pp. 17091712.Google Scholar
Bugajski, M. and Lewandowski, W., J. Appl. Phys. 57, 521530 (1985).CrossRefGoogle Scholar
Chao, L.-L., Freiler, M.B., Levy, M., Lin, J.-L., Cargill, G.S. III, Osgood, R.M. Jr, and McLane, G.F. in Diagnostic Techniques for Semiconductor Materials Processing (Mat. Res. Soc. Symp. Proc. 406, Boston, MA, 1995) pp. 543548.Google Scholar