Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T11:28:28.696Z Has data issue: false hasContentIssue false

Catalytic Reduction of CO2 into Solar Fuels via Ferrite Based Thermochemical Redox Reactions

Published online by Cambridge University Press:  15 May 2017

Rahul R. Bhosale*
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Anand Kumar
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Fares AlMomani
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Majeda Khraisheh
Affiliation:
Department of Chemical Engineering, Qatar University, Doha, Qatar.
Ivo Alxneit
Affiliation:
Bioenergy and Catalysis Laboratory, Paul Scherrer Institute, CH-5232 Villigen, Switzerland.
*
Get access

Abstract

In this study, Ni based ferrite nanomaterials were synthesized using sol-gel method for solar thermochemical splitting of CO2 using a thermogravimetric analyzer. To synthesize the ferrite materials, the corresponding metal precursors were dissolved in ethanol (with required molar ratios). After achieving the dissolution, propylene oxide (PO) was added to achieve the gel formation. Freshly synthesized gels were aged, dried, and calcined by heating up to 600°C in air. Powder x-ray diffractometer (XRD), BET surface area, as well as scanning (SEM) and transmission (TEM) electron microscopy characterized the calcined powders. The sol-gel derived ferrites were further tested towards their thermal reduction and CO2 splitting ability using a high temperature thermogravimetric analyzer (TGA).

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dry, M.E., Catal. Today. 71, 227241 (2002).Google Scholar
Steinfeld, A., Sol. Energy. 78, 603615 (2005).CrossRefGoogle Scholar
Scheffe, J.R., Steinfeld, A., Mater. Today. 17, 341348 (2014).CrossRefGoogle Scholar
Agrafiotis, C.C., Pagkoura, C., Zygogianni, A., Karagiannakis, G., Kostoglou, M., Konstandopoulos, A.G., Int. J. Hydrogen Energy. 37, 89648980 (2012).Google Scholar
Agrafiotis, C., Zygogianni, A., Pagkoura, C., Kostoglou, M., Konstandopoulos, A.G., AIChE J. 59, 12131225 (2013).CrossRefGoogle Scholar
Allen, K.M., Coker, E.N., Auyeung, N., Klausner, J.F., JOM. 65, 16701681 (2013).CrossRefGoogle Scholar
Allendorf, M.D., Diver, R.B., Siegel, N.P., Miller, J.E., Energy Fuels. 22, 41154124 (2008).Google Scholar
Arifin, D., Aston, V.J., Liang, X., McDaniel, A.H., Weimer, A.W., Energy Environ. Sci. 5, 94389443 (2012).Google Scholar
Bhosale, R.R., Shende, R.V., Puszynski, J.A., Int. Rev. Chem. Eng. 2, 852 (2010).Google Scholar
Bhosale, R.R., Alxneit, I., Broeke, van den, LP, Leo, Kumar, A., Jilani, M., Gharbia, S.S., Folady, J., Dardor, D.Z., Mater. Res. Soc. Symp. Proc. 1675 (2014).CrossRefGoogle Scholar
Bhosale, R.R., Kumar, A., AlMomani, F., Alxneit, I., Ceram. Int. 42, 24312438 (2016).Google Scholar
Bhosale, R.R., Shende, R.V., Puszynski, J.A., Int. J. Hydrogen Energy. 37, 29242934 (2012).CrossRefGoogle Scholar
Bhosale, R. R., Khadka, R., Puszynski, J., Shende, R., J. Renewable Sustainable Energy. 3 063104–01 (2011).Google Scholar
Neises, M., Roeb, M., Schmücker, M., Sattler, C., Pitz-Paal, R., Int. J. Energy Res. 34, 651661 (2010).Google Scholar
Scheffe, J.R., Allendorf, M.D., Coker, E.N., Jacobs, B.W., McDaniel, A.H., Weimer, A.W., Chem. Mater. 23, 20302038 (2011).Google Scholar
Bhosale, R. R., Shende, R., Puszynski, J., Mater. Res. Soc. Symp. Proc. 1387 (2012).CrossRefGoogle Scholar
Sano, T., Kojima, M., Hasegawa, N., Tsuji, M., Tamaura, Y., Int. J. Hydrogen Energy. 21, 781787 (1996).Google Scholar
Gokon, N., Takahashi, S., Yamamoto, H., Kodama, T., Int. J. Hydrogen Energy. 33, 21892199 (2008).Google Scholar
Fresno, F., Fernández-Saavedra, R., Gómez-Mancebo, M.B., Vidal, A., Sánchez, M., Rucandio, M.I., Quejido, A.J., Romero, M., Int. J. Hydrogen Energy. 34, 29182924 (2009).Google Scholar
Steinfeld, A., Kuhn, P., Reller, A., Palumbo, R., Murray, J., Tamaura, Y., Int. J. Hydrogen Energy. 23, 767774 (1998).23CrossRefGoogle Scholar
Tamaura, Y., Hasegawa, N., Kojima, M., Ueda, Y., Amano, H., Tsuji, M., Energy. 23, 879886 (1998).Google Scholar
Tamaura, Y., Energy. 20, 325330 (1995).Google Scholar
Agrafiotis, C., Roeb, M., Konstandopoulos, A. G., Nalbandian, L., Zaspalis, V.T., Sattler, C., Stobbe, P., Steele, A. M., Sol. Energy. 79, 409421 (2005).CrossRefGoogle Scholar
Le Gal, A., Abanades, S., Flamant, G., Energy Fuels 25 48364845 (2011).Google Scholar
Abanades, S., Le Gal, A., Fuel 102 180186 (2012).Google Scholar
Bhosale, R. R., Kumar, A., AlMomani, F., Ghosh, U., Al-Muhtaseb, S., Gupta, R., Alxneit, I., Ceram. Int. 42, 93549362 (2016).CrossRefGoogle Scholar