Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T18:59:47.672Z Has data issue: false hasContentIssue false

Carbon Nanotube Peapods Under High-Strain Rate Conditions: A Molecular Dynamics Investigation

Published online by Cambridge University Press:  27 February 2020

J. M. De Sousa
Affiliation:
Federal Institute of Education Science and Technology of Piaui - IFPI, São Raimundo Nonato, Piauí, 64770-000, PI, Brazil
C. F. Woellner*
Affiliation:
Physics Department, Federal University of Parana – UFPR, Curitiba, 81531-980, PR, Brazil
L. D. Machado
Affiliation:
Physiscs Department, Federal University of Rio Grande do Norte –UFRN, Natal, 59072-970, RN, Brazil
P. A. S. Autreto
Affiliation:
Center of Natural Human Science department, Federal University of ABC – UFABC, Santo Andre, 09210-580, SP, Brazil
D. S. Galvao
Affiliation:
Applied Physics Department, State University of Campinas – UNICAMP, Campinas, 13083-859, SP, Brazil Center for Computing in Engineering and Sciences, State University of Campinas – UNICAMP, Campinas, 13083-859, SP, Brazil
*
Get access

Abstract

New forms of carbon-based materials have received great attention, and the developed materials have found many applications in nanotechnology. Interesting novel carbon structures include the carbon peapods, which are comprised of fullerenes encapsulated within carbon nanotubes. Peapod-like nanostructures have been successfully synthesized, and have been used in optical modulation devices, transistors, solar cells, and in other devices. However, the mechanical properties of these structures are not completely elucidated. In this work, we investigated, using fully atomistic molecular dynamics simulations, the deformation of carbon peapods under high-strain rate conditions, which are achieved by shooting the peapods at ultrasonic velocities against a rigid substrate. Our results show that carbon peapods experience large deformation at impact, and undergo multiple fracture pathways, depending primarily on the relative orientation between the peapod and the substrate, and the impact velocity. Observed outcomes include fullerene ejection, carbon nanotube fracture, fullerene, and nanotube coalescence, as well as the formation of amorphous carbon structures.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Ozden, S., Autreto, P. A., Tiwary, C. S., Khatiwada, S., Machado, L., Galvao, D. S., Vajtai, R., Barrera, E. V., and Ajayan, P. M., Nano. Lett. 14, 4131 (2014).CrossRefGoogle Scholar
Smith, B. W., Monthioux, M., and Luzzi, D. E., Nature 396, 323 (1998).CrossRefGoogle Scholar
Burteaux, B., Claye, A., Smith, B. W., Monthioux, M., Luzzi, D. E., and Fischer, J. E., Chem. Phys. Lett. 310, 21 (1999).CrossRefGoogle Scholar
Bandow, S., Takizawa, M., Hirahara, K., Yudasaka, M., and Iijima, S., Chem. Phys. Lett. 337, 4854 (2001).CrossRefGoogle Scholar
Smith, B. W., Russo, R. M., Chikkannanavar, S. B., and Luzzi, D. E., J. Appl. Phys. 91, 9333 (2002).CrossRefGoogle Scholar
Noya, E. G., Srivastava, D., Chernozatonskii, L. A., and Menon, M., Phys. Rev. B 70, 115416 (2004).CrossRefGoogle Scholar
Pfeiffer, R., Kuzmany, H., Pichler, T., Kataura, H., Achiba, Y., Melle-Franco, M., and Zerbetto, F., Phys. Rev. B 69, 035404 (2004).CrossRefGoogle Scholar
Wang, M., and Li, C. M., Nanotechnology 21, 035704 (2009).CrossRefGoogle Scholar
Rochefort, A., Phys. Rev. B 67, 115401 (2003).CrossRefGoogle Scholar
Muramatsu, H., Hayashi, T., Kim, Y. A., Shimamoto, D., Endo, M., Meunier, V., Sumpter, B. G., Terrones, M., and Dresselhaus, M. S., Small 5, 2678 (2009).CrossRefGoogle Scholar
Shimada, T., Okazaki, T., Taniguchi, R., Sugai, T., Shinohara, H., Suenaga, K., Ohno, Y., Mizuno, S., Kishimoto, S., and Mizutani, T., Appl. Phys. Lett. 81, 4067 (2002).CrossRefGoogle Scholar
Li, Y., Kaneko, T., and Hatakeyama, R., Appl. Phys. Lett. 92, 183115 (2008).CrossRefGoogle Scholar
Shiraishi, M., Takenobu, T., Yamada, A., Ata, M., and Kataura, H., Chem. Phys. Lett. 358, 213 (2002).CrossRefGoogle Scholar
Zhang, H., Feng, Y., Zhang, Y., Fang, L., Li, W., Liu, Q., Wu, K., and Wang, Y., ChemSusChem 7 2000 (2014).CrossRefGoogle Scholar
Gu, D., Li, W., Wang, F., Bongard, H., Spliethoff, B., Schmidt, W., Weidenthaler, C., Xia, Y., Zhao, D., and Schüth, F., Angew. Chem. 54, 7060 (2015).CrossRefGoogle Scholar
Lee, C., Kang, K., Park, K., Kim, M., Kim, H., Kim, H., Fischer, J., and Johnson, A., JJAP 42, 5392 (2003).Google Scholar
Jiang, H., Sun, T., Li, C., and Ma, J., RSC Advances 1, 954 (2011).CrossRefGoogle Scholar
Van Duin, A. C., Dasgupta, S., Lorant, F., and Goddard, W. A., J. Phys. Chem. A 105, 9396 (2001).CrossRefGoogle Scholar
Plimpton, S., J. Comp. Phys. 117, 1 (1995).CrossRefGoogle Scholar
De Sousa, J. M., Machado, L. D., Woellner, C. F., da Silva Autreto, P. A., and Galvao, D. S., MRS Advances 1, 1423 (2016).CrossRefGoogle Scholar
Woellner, C. F., Machado, L. D., Autreto, P. A., De Sousa, J. M., and Galvao, D. S., Phys Chem. Chem. Phys. 20, 4911 (2018).CrossRefGoogle Scholar
De Sousa, J. M., Botari, T., Perim, E., Bizao, R., and Galvao, D. S., RSC Advances 6, 76915 (2016).CrossRefGoogle Scholar
Evans, D. J., and Holian, B. L., J. Chem. Phys. 83, 4069 (1985).CrossRefGoogle Scholar
Machado, L. D., Ozden, S., Tiwary, C., Autreto, P. A. S., Vajtai, R., Barrera, E. V., Galvao, D. S., and Ajayan, P. M., Phys. Chem. Chem. Phys. 18, 14776 (2016).CrossRefGoogle Scholar
Ni, B., Sinnott, S. B., Mikulski, P. T., and Harrison, J. A., Phys. Rev. Lett. 88, 205505 (2002).CrossRefGoogle Scholar
Shahabi, A., Ghassemi, M., Langroudi, S. M., Nejad, H. R., and Hamedi, M. H., Comput. Mater. Sci. 50, 586 (2010).CrossRefGoogle Scholar
Zhou, L., Zhu, B. E., Pan, Z. Y., Wang, Y. X., and Zhu, J., Nanotechnology 18, 275709 (2007).CrossRefGoogle Scholar
Yoon, M., Berber, S., and Tománek, D., Phys. Rev. B 71, 155406 (2005).CrossRefGoogle Scholar
Berber, S., Kwon, Y. K., and Tománek, D., Phys. Rev. Lett. 88, 185502 (2002).CrossRefGoogle Scholar