Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T05:19:37.106Z Has data issue: false hasContentIssue false

Cadmium Sulphide Sensitized Crystal Facet Tailored Nanostructured Nickel Ferrite @ Hematite Core-Shell Ternary Heterojunction Photoanode for Photoelectrochemical Water Splitting

Published online by Cambridge University Press:  28 July 2020

Soumyajit Maitra
Affiliation:
Deparment of Chemical Engineering, University of Calcutta, 92, APC Road, Kolkata, West Bengal700009, India.
Arundhati Sarkar
Affiliation:
Deparment of Chemical Engineering, Jadavpur University, 88, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal700032, India.
Toulik Maitra
Affiliation:
Deparment of Chemical Engineering, University of Calcutta, 92, APC Road, Kolkata, West Bengal700009, India.
Somoprova Halder
Affiliation:
Deparment of Chemical Engineering, University of Calcutta, 92, APC Road, Kolkata, West Bengal700009, India.
Subhasis Roy*
Affiliation:
Deparment of Chemical Engineering, University of Calcutta, 92, APC Road, Kolkata, West Bengal700009, India.
Kajari Kargupta
Affiliation:
Deparment of Chemical Engineering, Jadavpur University, 88, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal700032, India.
*
*Corresponding author. Tel.: +91 -9775032952 (mobile), +9133-2350-8386/6396 (ext. 256) (office), E-mail address: [email protected], [email protected]
Get access

Abstract

Design of composite semiconductor nanostructures with proper band alignment for efficient charge separation and carrier transport has been at the center of research for photoelectrochemical water splitting. This work demonstrates the deposition of a NiFe2O4 @Fe2O3 core-shell nanostructured film sensitized with CdS to form a ternary heterojunction for cascade type electron transfer. The hematite nanostructures were grown by hydrothermal approach through dipping into a solution of Nickel Nitrate yielded anchoring of Ni2+ ions on the outer surface. The films were then annealed at 650 0C for the diffusion of Ni2+ ions into the hematite lattice which forms core-shell NiFe2O4 @Fe2O3 heterojunction. The films were further sensitized with CdS nanoparticles deposited by a hydrothermal approach to form the final ternary heterojunction photoanode. Several different nanostructures were grown and the effect of crystal facet tailoring was observed on Ni loading and photoelectrochemical performance. The photoelectrochemical measurements were carried out using a potentiostat under 100 mW/cm2 light source (150W Xenon Lamp) with Pt counter electrode and 0.5 M Na2S and 0.5 M Na2SO3 electrolyte. A current density of 3.47 mA/cm2 was observed at 1.23 V (vs Ag/AgCl). An Applied Bias to Photocurrent Efficiency (ABPE) of 1.8 % photoconversion efficiency was observed using the fabricated electrodes at 0.288V (vs Ag/AgCl).

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fujishima, A. and Honda, K., Nature 238, 38 (1972).CrossRefGoogle Scholar
Murphy, A. B., Barnes, P. R. F., Randeniya, L. K., Plumb, I. C., Grey, I. E., Horne, M. D., and Glasscock, J. A., Int. J. Hydrogen Energy 31, 1999 (2006).CrossRefGoogle Scholar
Khaselev, O. and Turner, J. A., Science (80). 280, 425 (1998).CrossRefGoogle Scholar
Warwick, M. E. A., Kaunisto, K., Barreca, D., Carraro, G., Gasparotto, A., Maccato, C., Bontempi, E., Sada, C., Ruoko, T. P., Turner, S., and Van Tendeloo, G., ACS Appl. Mater. Interfaces 7, 8667 (2015).CrossRefGoogle Scholar
Marelli, M., Naldoni, A., Minguzzi, A., Allieta, M., Virgili, T., Scavia, G., Recchia, S., Psaro, R., and Dal Santo, V., ACS Appl. Mater. Interfaces 6, 11997 (2014).CrossRefGoogle Scholar
Cornuz, M., Grätzel, M., and Sivula, K., Chem. Vap. Depos. 16, 291 (2010).CrossRefGoogle Scholar
Dillert, R., Taffa, D. H., Wark, M., Bredow, T., and Bahnemann, D. W., APL Mater. 3, (2015).CrossRefGoogle Scholar
Yin, Y., Zhang, X., and Sun, C., Prog. Nat. Sci. Mater. Int. 28, 430 (2018).CrossRefGoogle Scholar
Hussain, S., Tavakoli, M. M., Waleed, A., Virk, U.S., Yang, S., Waseem, A., Fan, Z., and Nadeem, M. A., Langmuir 34, 3555 (2018).CrossRefGoogle Scholar
McDonald, K. J. and Choi, K. S., Chem. Mater. 23, 4863 (2011).CrossRefGoogle Scholar
Shi, Y., Li, H., Wang, L., Shen, W., and Chen, H., ACS Appl. Mater. Interfaces 4, 4800 (2012).CrossRefGoogle Scholar
Natarajan, K., Saraf, M., and Mobin, S.M., (2017).Google Scholar
Mahadik, M. A., Subramanian, A., Ryu, J., Cho, M., and Jang, J. S., Dalt. Trans. 46, 2377 (2017).CrossRefGoogle Scholar
Abdul Rashid, N. M., Haw, C., Chiu, W., Khanis, N. H., Rohaizad, A., Khiew, P., and Abdul Rahman, S., CrystEngComm 18, 4720 (2016).CrossRefGoogle Scholar
Nife, O., Holinsworth, B.S., Mazumdar, D., Sims, H., Sun, Q., Yurtisigi, M. K., Sarker, S. K., Gupta, A., Butler, W.H., and Musfeldt, J.L., Appl. Phys. Lett. 082406, 2 (2013).Google Scholar
Sharma, P., Jang, J. W., and Lee, J. S., ChemCatChem 11, 157 (2019).CrossRefGoogle Scholar
Roy, S. and Botte, G. G., RSC Adv. 8, 5388 (2018).CrossRefGoogle Scholar
Shen, W. -M. and J. Electrochem. Soc. 133, 107 (1986).CrossRefGoogle Scholar