Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T18:05:11.087Z Has data issue: false hasContentIssue false

Biomolecule-derived Fluorescent Carbon Nanoparticle as Bioimaging Probe

Published online by Cambridge University Press:  16 January 2018

Haydar Ali
Affiliation:
Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-700032, India
Santu Ghosh
Affiliation:
Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-700032, India
Nikhil R. Jana*
Affiliation:
Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-700032, India
*
Get access

Abstract

Nanomaterials have broad application potential in biomedical and environmental science. Engineered nanomaterials are required to explore such potential. Among them carbon-based fluorescent nanoparticles offer promising alternative of conventionally used semiconductor nanocrystals, as they do not have heavy metals and associated toxicity issues. We are developing synthetic methods for high quality fluorescent carbon nanoparticle, suitable for biological staining and diagnostics. Here we focus on synthesis of fluorescent carbon nanoparticle from biomolecules, exploiting the conventionally used nucleation-growth conditions for synthesis of high quality nanocrystals such as quantum dot and metal oxides. We have shown that high quality fluorescent carbon nanoparticle can be synthesized from folic acid, riboflavin and lactose and they can be used as non-toxic bio-imaging probe.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baker, S. N. and Baker, G. A., Angew. Chem. Int. Ed., 49, 67266744 (2010).CrossRefGoogle Scholar
Wu, Z. L., Liu, Z. X. and Yuan, Y. H., J. Mater. Chem. B, 5, 37943809 (2017).CrossRefGoogle Scholar
Wang, R., Lu, K.-Q., Tang, Z.-R. and Xu, Y.-J., J. Mater. Chem. A, 5, 37173734 (2017).CrossRefGoogle Scholar
Righetto, M., Privitera, A., Fortunati, I., Mosconi, D., Zerbetto, M., Curri, M. L., Corricelli, M., Moretto, A., Agnoli, S., Franco, L., Bozio, R. and Ferrante, C., J. Phys. Chem. Lett., 8, 22362242 (2017).CrossRefGoogle Scholar
Sharma, A., Gadly, T., Neogy, S., Ghosh, S. K. and Kumbhakar, M., J. Phys. Chem. Lett., 8, 10441052 (2017).CrossRefGoogle Scholar
Schneider, J., Reckmeier, C. J., Xiong, Y., von Seckendorff, M., Susha, A. S., Kasak, P. and Rogach, A. L., J. Phys. Chem. C, 121, 20142022 (2017).CrossRefGoogle Scholar
Wang, C., Jiang, K., Wu, Q., Wu, J. and Zhang, C., Chem. Eur. J., 22, 1447514479 (2016).CrossRefGoogle Scholar
Ding, H., Yu, S.-B., Wei, J.-S. and Xiong, H.-M., ACS Nano, 10, 484491 (2016).CrossRefGoogle Scholar
Sun, S., Zhang, L., Jiang, K., Wu, A. and Lin, H., Chem. Mater., 28, 86598668 (2016).CrossRefGoogle Scholar
Wang, Z., Yuan, F., Li, X., Li, Y., Zhong, H., Fan, L. and Yang, S., Adv. Mater., 29, 1702910 (2017).CrossRefGoogle Scholar
Bhunia, S. K., Maity, A. R., Nandi, S., Stepensky, D. and Jelinek, R., ChemBioChem, 17, 614619 (2016).CrossRefGoogle Scholar
Yang, F., LeCroy, G. E., Wang, P., Liang, W., Chen, J., Fernando, K. A. S., Bunker, C. E., Qian, H. and Sun, Y.-P., J. Phys. Chem. C, 120, 2560425611 (2016).CrossRefGoogle Scholar
Hu, J.-J., Bai, X.-L., Liu, Y.-M., Liao, X., Anal. Chim. Acta, 995, 99105 (2017)CrossRefGoogle Scholar
Efremushkin, L., Bhunia, S. K., Jelinek, R., Salomon, A., J. Phys. Chem. Lett., 8, 60806085 (2017).CrossRefGoogle Scholar
Jana, N. R., PhysChemChemPhys, 13, 385396 (2011).Google Scholar
Bhunia, S. K., Saha, A., Maity, A. R., Ray, S. C. and Jana, N. R., Scientific Reports, 1473 (2013).CrossRefGoogle Scholar
Bhunia, S. K., Pradhan, N. and Jana, Nikhil R., ACS Appl. Mater. Interfaces, 6, 76727679 (2014).CrossRefGoogle Scholar
Ali, H., Bhunia, S. K., Dalal, C. and Jana, N. R., ACS Appl. Mater. Interfaces, 8, 93059313 (2016).CrossRefGoogle Scholar
Peng, Z. A. and Peng, X. G., J. Am. Chem. Soc., 123, 183184 (2001).CrossRefGoogle Scholar
Jana, N. R., Chen, Y. F. and Peng, X. G., Chem. Mater., 16, 39313935 (2004).CrossRefGoogle Scholar
Tang, M. M. and Bacon, R., Carbon, 2, 211220 (1964).CrossRefGoogle Scholar
Lee, K., Park, E., Lee, H. A., Sugnaux, C., Shin, M., Jeong, C. J., Lee, J., Messersmith, P. B., Park, S. Y. and Lee, H., Nanoscale, 9, 1659616601 (2017).CrossRefGoogle ScholarPubMed