Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-05T03:55:58.619Z Has data issue: false hasContentIssue false

Atomistic Simulations of Carbon and Hydrogen Diffusion and Segregation in Alfa-Iron Deviant CSL Grain Boundaries

Published online by Cambridge University Press:  22 May 2018

Mohamed A. Hendy
Affiliation:
Centre for Simulation Innovation and Advanced Manufacturing, the British University in Egypt, El-Sherouk City, Cairo11837, Egypt
Tarek M. Hatem*
Affiliation:
Centre for Simulation Innovation and Advanced Manufacturing, the British University in Egypt, El-Sherouk City, Cairo11837, Egypt
Jaafar A. El-Awady
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland21218, USA
*
Get access

Abstract

Polycrystalline materials’ mechanical properties and failure modes depend on many factors that include diffusion and segregation of different alloying elements and solutes as well as the structure of its grain boundaries (GBs). Segregated solute atoms to GB can alter the properties of steel alloys. Some of these elements lead to enhancing the strength of steel, on the other hand others can degrade the toughness of steel significantly. It is well known that carbon increases the cohesion at grain boundary. While the presence of hydrogen in steel have a drastic effects including blistering, flaking and embrittlement of steel. In practice during forming processes, the coincidence site lattice (CSL) GBs are experiencing deviations from their ideal configurations. Consequently, this will change the atomic structural integrity by superposition of sub-boundary dislocation networks on the ideal CSL interfaces. For this study, the ideal ∑3 (112) structure and its angular deviations in BCC iron within the range of Brandon criterion are studied comprehensively using molecular statics simulations. The GB and free surface segregation energies of carbon and hydrogen atoms will be quantified. Rice-Wang model is used to assess the strengthening/embrittlement impact variation over the deviation angles.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Refrences

Li, Y., Raabe, D., Herbig, M., Choi, P.P., Goto, S., Kostka, A., Yarita, H., Borchers, C., Kirchheim, R., Phys. Rev. Lett. 113 (2014) 15.Google Scholar
Hatem, T.M., Zikry, M. a., Philos. Mag. 89 (2009) 30873109.CrossRefGoogle Scholar
Mandal, S., Pradeep, K.G., Zaefferer, S., Raabe, D., Scr. Mater. 81 (2014) 1619.CrossRefGoogle Scholar
Rajagopalan, M., Tschopp, M.A., Solanki, K.N., Jom 66 (2014) 129138.CrossRefGoogle Scholar
Wang, J., Janisch, R., Madsen, G.K.H., Drautz, R., Acta Mater. 115 (2016) 259268.CrossRefGoogle Scholar
Cottrell, A.H., Mater. Sci. Technol. 6 (1990) 121123.CrossRefGoogle Scholar
Rhodes, N.R., Tschopp, M.A., Solanki, K.N., Model. Simul. Mater. Sci. Eng. 21 (2013) 35009.CrossRefGoogle Scholar
Braithwaite, J.S., Rez, P., Acta Mater. 53 (2005) 27152726.CrossRefGoogle Scholar
Hatem, T.M., Zikry, M.A., Comput. Mater. Contin. 17 (2010) 127147.Google Scholar
Wagih, M., Tang, Y., Hatem, T., El-Awady, J.A., Mater. Res. Lett. 3 (2015) 184189.CrossRefGoogle Scholar
Hatem, T.M., Zikry, M.A., J. Mech. Phys. Solids 58 (2010) 10571072.CrossRefGoogle Scholar
Hatem, T.M., Zikry, M.A., Mater. Sci. Technol. 27 (2011) 15701573.CrossRefGoogle Scholar
Khafagy, K.H., Hatem, T.M., Bedair, S.M., Appl. Phys. Lett. 112 (2018).CrossRefGoogle Scholar
Seita, M., Hanson, J.P., Gradečak, S., Demkowicz, M.J., Nat. Commun. 6 (2015).CrossRefGoogle Scholar
Herbig, M., Raabe, D., Li, Y.J., Choi, P., Zaefferer, S., Goto, S., Phys. Rev. Lett. 126103 (2014) 15.Google Scholar
Hamza, M., Hatem, T.M., Raabe, D., El-Awady, J.A., (2015) V009T12A069.Google Scholar
Hendy, M., Hatem, T.M., El-Awady, J.A., in:, TMS Annu. Meet. Exhib., 2018, pp. 323332.Google Scholar
Levy, J., Phys. Status Solidi 31 (1969) 193201.CrossRefGoogle Scholar
Plimpton, S., J. Comput. Phys. 117 (1995) 119.CrossRefGoogle Scholar
Veiga, R.G.A., Becquart, C.S., Perez, M., Comput. Mater. Sci. 82 (2014) 118121.CrossRefGoogle Scholar
Ramasubramaniam, A., Itakura, M., Carter, E.A., Phys. Rev. B 79 (2009) 174101.CrossRefGoogle Scholar
Rajagopalan, M., Tschopp, M.A., Solanki, K.N., Jom 66 (2014) 129138.CrossRefGoogle Scholar
Solanki, K.N., Tschopp, M.A., Bhatia, M.A., Rhodes, N.R., Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44 (2013) 13651375.CrossRefGoogle Scholar
Navon, I.M., Legler, D.M., Mon. Weather Rev. 115 (1987) 14791502.2.0.CO;2>CrossRefGoogle Scholar
Fukai, Y., J. Less Common Met. 101 (1984) 116.CrossRefGoogle Scholar
Rice, J.R., Wang, J.S., Mater. Sci. Eng. A 107 (1989) 2340.CrossRefGoogle Scholar
Rhodes, N.R., Tschopp, M.A., Solanki, K.N., Model. Simul. Mater. Sci. Eng. 21 (2013) 35009.CrossRefGoogle Scholar