Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-03T00:33:09.252Z Has data issue: false hasContentIssue false

Atomistic simulation of nearly defect-free models of amorphous silicon: An information-based approach

Published online by Cambridge University Press:  31 January 2019

Dil K. Limbu*
Affiliation:
Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi39406, USA
Raymond Atta-Fynn
Affiliation:
Department of Physics, University of Texas at Arlington, Arlington, Texas76019, USA
Parthapratim Biswas
Affiliation:
Department of Physics and Astronomy, University of Southern Mississippi, Hattiesburg, Mississippi39406, USA
*
Get access

Abstract

We present an information-based total-energy optimization method to produce nearly defect-free structural models of amorphous silicon. Using geometrical, structural, and topological information from disordered tetrahedral networks, we have shown that it is possible to generate structural configurations of amorphous silicon, which are superior than the models obtained from conventional reverse Monte Carlo and molecular dynamics simulations. The new data-driven hybrid approach presented here is capable of producing atomistic models with structural and electronic properties which are on a par with those obtained from the modified Wooten-Winer-Weaire (WWW) models of amorphous silicon. Structural, electronic, and thermodynamic properties of the hybrid models are compared with the best dynamical models obtained from using machine-intelligence-based algorithms and efficient classical molecular dynamics simulations, reported in the recent literature. We have shown that, together with the WWW models, our hybrid models represent one of the best structural models so far produced by total-energy-based Monte Carlo methods in conjunction with experimental diffraction data.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Street, R. A., Technology and Applications of Amorphous Silicon (Springer, Berlin Germany, 2000).CrossRefGoogle Scholar
Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K., and Maruyama, E., IEEE Journal of Photovoltaics 4, 96 (2014).CrossRefGoogle Scholar
Veldhorst, M., Yang, C. H., Hwang, J. C. C., Huang, W., Dehollain, J. P., Muhonen, J. T., Simmons, S., Laucht, A., Hudson, F. E., Itoh, K. M., Morello, A., and Dzurak, A. S., Nature 526, 410 (2015).CrossRefGoogle Scholar
Zachariasen, W. H., J. Am. Chem. Soc. 54, 3841 (1932).CrossRefGoogle Scholar
Wooten, F., Winer, K., and Weaire, D., Phys. Rev. Lett. 54, 1392 (1985).CrossRefGoogle Scholar
Barkema, G. T. and Mousseau, N., Phys. Rev. B 62, 4985 (2000).CrossRefGoogle Scholar
Deringer, V. L., Bernstein, N., Bartók, A. P., Cliffe, M. J., Kerber, R. N., Marbella, L. E., Grey, C. P., Elliott, S. R., and Csányi, G., J. Phys. Chem. Lett. 9, 2879 (2018).CrossRefGoogle Scholar
Atta-Fynn, R. and Biswas, P., J. Chem. Phys. 148, 204503 (2018).CrossRefGoogle Scholar
Pedersen, A., Pizzagalli, L., and Jónsson, H., New J. Phys. 19, 063018 (2017).CrossRefGoogle Scholar
Car, R. and Parrinello, M., Phys. Rev. Lett. 60, 204 (1988).CrossRefGoogle Scholar
Biswas, P., Atta-Fynn, R., and Drabold, D. A., Phys. Rev. B 69, 195207 (2004).CrossRefGoogle Scholar
McGreevy, R. L., J. Phys.: Condens. Matter 13, R877 (2001).Google Scholar
Gereben, O. and Pusztai, L., Phys. Rev. B 50, 14136 (1994).CrossRefGoogle Scholar
Cliffe, M. J., Dove, M. T., Drabold, D. A., and Goodwin, A. L., Phys. Rev. Lett. 104, 125501 (2010).CrossRefGoogle Scholar
Pandey, A., Biswas, P., and Drabold, D. A., Phys. Rev. B 92, 155205 (2015).CrossRefGoogle Scholar
Biswas, P., Tafen, D. N., and Drabold, D. A., Phys. Rev. B 71, 054204 (2005).CrossRefGoogle Scholar
Limbu, D. K., Atta-Fynn, R., Drabold, D. A., Elliott, S. R., and Biswas, P., Phys. Rev. Materials 2, 115602 (2018).CrossRefGoogle Scholar
Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).CrossRefGoogle Scholar
Vink, R. L. C., Barkema, G. T., van der Weg, W. F., and Mousseau, N., J. Non-Cryst. Solids 282, 248 (2001).CrossRefGoogle Scholar
Soler, J. M., Artacho, E., Gale, J. D., García, A., Junquera, J., Ordejón, P., and Sánchez-Portal, D., J. Phys.: Condens. Matter 14, 2745 (2002).Google Scholar
Troullier, N. and Martins, J. L., Phys. Rev. B 43, 1993 (1991).CrossRefGoogle Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
Hoppe, R., Z. Kristallogr. 150, 23 (1979).CrossRefGoogle Scholar
Limbu, D. K., Madueke, M. U., Atta-Fynn, R., Drabold, D. A., and Biswas, P., Ab initio density-functional studies of 13-atom Cu and Ag clusters , arXiv:1809.00300 (2018).Google Scholar
Laaziri, K., Kycia, S., Roorda, S., Chicoine, M., Robertson, J. L., Wang, J., and Moss, S. C., Phys. Rev. B 60, 13520 (1999).CrossRefGoogle Scholar
Beeman, D., Tsu, R., and Thorpe, M. F., Phys. Rev. B 32, 874 (1985).CrossRefGoogle Scholar
Steinhardt, P. J., Nelson, D. R., and Ronchetti, M., Phys. Rev. B 28, 784 (1983).CrossRefGoogle Scholar
Limbu, D. K., Atta-Fynn, R., Drabold, D. A., Elliott, S. R., and Biswas, P., Phys. Rev. B 96, 174208 (2017).CrossRefGoogle Scholar
Maradudin, A. A., Montroll, E. W., Weiss, G. H., and Ipatova, I. P., Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, 1971).Google Scholar
Zink, B. L., Pietri, R., and Hellman, F., Phys. Rev. Lett. 96, 055902 (2006).CrossRefGoogle Scholar