Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-07T23:24:22.722Z Has data issue: false hasContentIssue false

Application of An Organic Plant-Derived Binder in the Fabrication of Diatomaceous Earth Waste-Based Membranes for Water Purification Systems

Published online by Cambridge University Press:  24 February 2020

Mary T. Simiyu*
Affiliation:
Department of Physics, University of Nairobi, P.O Box 30197-00100 Nairobi, Kenya
Francis W. Nyongesa
Affiliation:
Department of Physics, University of Nairobi, P.O Box 30197-00100 Nairobi, Kenya
Bernard O. Aduda
Affiliation:
Department of Physics, University of Nairobi, P.O Box 30197-00100 Nairobi, Kenya
Zephania Birech
Affiliation:
Department of Physics, University of Nairobi, P.O Box 30197-00100 Nairobi, Kenya
Godwin Mwebaze
Affiliation:
Makerere University, College of Engineering Design Art and Technology, Uganda
*
Get access

Abstract

This work reports on the use of diatomaceous earth (DE) waste and organic binder derived from Corchorus olitorius, locally known as “Mrenda” in the design of an efficient water filtration membranes. Charcoal powder was incorporated to enhance the porosity of the membrane. The firing was done at temperatures varying from 700.0 °C to 1150.0 °C. The DE waste samples comprised 79.0% silica (by mass) and 11.0% total flux content compared to porter’s clay that had 50.0% silica, 28.8% AL2O3 and 7.0% total flux content. On the other hand, the “Mrenda” binder contained 6.5% total organic matter. The use of the plant-derived binder enhanced the mechanical strength of the greenware by 52.7% and the fired membranes by 152.2%. The fabricated DE waste-based membranes were 15.0% stronger than clay-based ceramic membranes prepared under similar conditions. A sintering temperature of 900.0 °C was optimal in producing porous membranes for filtering of 4.1 liters of water per hour. The pore diameter of the membranes fabricated from DE waste only ranged between 2.0 nm – 99.0 nm. On micro-organisms filtering efficacy, the DE waste-based membranes and those fabricated with 5.0% charcoal were 99.9% and 88.4% effective in the removal of E. coli and Rotavirus respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Round, F.E., Crawford, R.M., and Mann, D.G., Diatoms: Biology and Morphology of the Genera (Cambridge university press, 1990).Google Scholar
Bergner, A.G.N., Strecker, M.R., Trauth, M.H., Deino, A., Gasse, F., Blisniuk, P., and Dühnforth, M., Quat. Sci. Rev. 28, 2804 (2009).CrossRefGoogle Scholar
Milligan, A.J. and Morel, F.M., Science 297, 1848 (2002).CrossRefGoogle Scholar
Richardson, J.L. and Dussinger, R.A., Hydrobiologia 143, 167 (1986).CrossRefGoogle Scholar
Michen, B., Diatta, A., Fritsch, J., Aneziris, C., and Graule, T., Sep. Purif. Technol. 81, 77 (2011).Google Scholar
Gergely, S., Bekassy-Molnar, E., and Vatai, G., J. Food Eng. 58, 311 (2003).CrossRefGoogle Scholar
Kilara, A. and Van Buren, J.P., in Process. Apple Prod. (Springer, 1989), pp. 8396.CrossRefGoogle Scholar
Njogu, M.S., Nyongesa, F.W., and Aduda, B.O., J. Mater. Sci. 43, 4107 (2008).CrossRefGoogle Scholar
Montes, F., Valavala, S., and Haselbach, L.M., J. ASTM Int. 2, 1 (2005).Google Scholar
Lee, K.-Y. and Santmartí, A., in Nanocellulose Sustain. (CRC Press, 2018), pp. 6786.CrossRefGoogle Scholar
Ahmad, F., Stedtfeld, R.D., Waseem, H., Williams, M.R., Cupples, A.M., Tiedje, J.M., and Hashsham, S.A., J. Microbiol. Methods 132, 27 (2017).CrossRefGoogle Scholar
Evans, T.M., Waarvick, C.E., Seidler, R.J., and LeChevallier, M.W., Appl Env. Microbiol 41, 130 (1981).CrossRefGoogle Scholar
Panz, C., Schmoll, R., Kempf, M., and Scholz, M., (31 May 2005).Google Scholar
Benjakul, S., Visessanguan, W., and Kwalumtharn, Y., Int. J. Food Sci. Technol. 39, 773 (2004).CrossRefGoogle Scholar
Wild, M.P., (17 November 2011).Google Scholar
Davey, B.G., Russell, J.D., and Wilson, M.J., Geoderma 14, 125 (1975).CrossRefGoogle Scholar
Andrade, F.A., Al-Qureshi, H.A., and Hotza, D., Appl. Clay Sci. 51, 1 (2011).CrossRefGoogle Scholar
Izuagie, A.A., Gitari, W.M., and Gumbo, J.R., Desalination Water Treat. 57, 16745 (2016).Google Scholar
Barré, P., Montagnier, C., Chenu, C., Abbadie, L., and Velde, B., Plant Soil 302, 213 (2008).CrossRefGoogle Scholar
Akhtar, F., Rehman, Y., and Bergström, L., Powder Technol. 201, 253 (2010).CrossRefGoogle Scholar
Aduda, B.O., Nyongesa, F.W., and Obado, G., J. Mater. Sci. Lett. 18, 1653 (1999).CrossRefGoogle Scholar
Ogacho, A.A., Aduda, B.O., and Nyongesa, F.W., J. Mater. Sci. 41, 8276 (2006).CrossRefGoogle Scholar
Singh, S., Singh, N., and MacRitchie, F., Food Hydrocoll. 25, 19 (2011).CrossRefGoogle Scholar
Jaschinski, T., Gunnars, S., Besemer, A.C., and Bragd, P., (October 2003).Google Scholar
Farid, S.B., J. Mater. Sci. 49, 4133 (2014).CrossRefGoogle Scholar
Wahl, F.M., Grim, R.E., and Graf, R.B., Am. Mineral. J. Earth Planet. Mater. 46, 196 (1961).Google Scholar
Zak Fang, Z., Sintering of Advanced Materials: Fundamental and Processes (Cambridge, UK: Woodhead Publishing Limited, 2010).CrossRefGoogle Scholar
Barsoum, M. and Barsoum, M.W., Fundamentals of Ceramics (CRC press, 2002).CrossRefGoogle Scholar
Kang, S.-J.L., Sintering: Densification, Grain Growth, and Microstructure (Elsevier, Amsterdam, 2005).Google Scholar
Meissner, J., Prause, A., Bharti, B., and Findenegg, G.H., Colloid Polym. Sci. 293, 3381 (2015).CrossRefGoogle Scholar
Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P., (2002).Google Scholar
Izuagie, A.A., Gitari, W.M., and Gumbo, J.R., J. Environ. Sci. Health Part A 51, 810 (2016).CrossRefGoogle Scholar
Trueba, F.J. and Woldringh, C.L., J. Bacteriol. 142, 869 (1980).CrossRefGoogle Scholar
Tate, J.E., Burton, A.H., Boschi-Pinto, C., Steele, A.D., Duque, J., and Parashar, U.D., Lancet Infect. Dis. 12, 136 (2012).CrossRefGoogle Scholar