Published online by Cambridge University Press: 15 March 2018
We live at present with a largely linear materials economy. Our use of natural resources is characterized by the sequence “take – make – use – dispose” as materials progress from mine, through product, to landfill. Increasing population, rising affluence and the limited capacity for the planet to provide resources and absorb waste argue for a transition towards a more circular way of using materials (F. Blomsma, and G. Brennan, J. Industrial Ecology 21, 603 (2017); W. McDonough and M. Braungart, Cradle to cradle, remaking the way we make things, (North Point Press, New York, 2002)).
When products come to the end of their lives the materials they contain are still there. Repair, reuse and recycling (the three “Rs”) can return these to active use creating a technological cycle that, in some ways, parallels the carbon, nitrogen cycle and hydrological cycles of the biosphere. Repair, reuse and recycling are not new ideas; they have been used for centuries to recirculate materials and, in less-developed economies, they still are. But in developed nations they dwindled as the cost of materials fell and that of labor rose over time, making all three Rs less attractive. This and the complexity of current products has led to loss reparability and, therefore, reuse. So, what is novel about the contemporary idea of a circular materials economy? Haven’t we been there before?
Over the last decade, the idea of deploying rather than consuming materials, has gained economic as well as environmental appeal. Governments now sign up to programs to foster circular economic ideas and mechanisms begin to appear to advance them. Here we examine the background, the successes and the challenges of implementing a circular materials economy and the degree to which it can deliver the ultimate goal – that of reducing the drain on non-renewable natural resources to as close to zero as possible.
Circular economy (CE) is closely linked with the ideas of a low-carbon economy, management of supply risks, value generation through the service-based economy and efficient resource management. CE implies a design that focusses on material legacy, creating an economy that retains or regenerates materials over many life cycles, hence not consuming but using materials.
Granta Design has a history of involvement with material circularity, through collaborative develop of tools to aid teaching of engineering and design courses and industrial decision-making. The paper concludes with a brief discussion of these.