Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T16:46:36.754Z Has data issue: false hasContentIssue false

Amorphous LiCoO2-based Positive Electrode Active Materials with Good Formability for All-Solid-State Rechargeable Batteries

Published online by Cambridge University Press:  05 February 2018

Kenji Nagao
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
Yuka Nagata
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
Atsushi Sakuda
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
Akitoshi Hayashi*
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
Masahiro Tatsumisago
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka599-8531, Japan
*
*Corresponding author: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Amorphous LiCoO2-based positive electrode materials are synthesized by a mechanical milling technique. As a lithium oxy-acid, Li2SO4, Li3PO4, Li3BO3, Li2CO3, and LiNO3 are selected and milled with LiCoO2. XRD patterns indicate that reaction between LiCoO2 and these lithium oxy-acids proceeds. Amorphization mainly occurs, and several broad peaks attributable to cubic LiCoO2 are observed in all the samples. These amorphous active materials show mixed conductivities of electron and lithium ion. All-solid-state cells using the prepared amorphous active materials and the Li2.9B0.9S0.1O3.1 glass-ceramic electrolyte are fabricated and their charge-discharge properties are examined. The cells with only the 80LiCoO2·20Li2SO4 (mol%) and the 80LiCoO2·20Li3PO4 active materials function as secondary batteries. This is because higher lithium ionic conductivities are obtained in the 80LiCoO2·20Li2SO4 and 80LiCoO2·20Li3PO4 active materials than in the others. The largest capacity is obtained in the cell with the 80LiCoO2·20Li2SO4 active material because of its good formability and high lithium ionic conductivity. In addition, the cell with the 80LiCoO2·20Li2SO4 positive electrode active material shows the better cycle and rate performance than that with the crystalline LiCoO2. It is noted that the amorphization with lithium oxy-acids is a promising technique for achieving a novel active material with better electrochemical performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

References

References:

Takada, K., Acta Mater., 64, 759 (2013).CrossRefGoogle Scholar
Mizuno, F., Hayashi, A., Tadanaga, K., Tatsumisago, M., Adv. Mater., 17, 918 (2005).CrossRefGoogle Scholar
Seino, Y., Ota, T., Takada, K., Hayashi, A., Tatsumisago, M., Energy Environ. Sci., 7, 627 (2014).Google Scholar
Hayashi, A., Furusawa, D., Takahashi, Y., Minami, K., Tatsumisago, M., Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B, 54, 109 (2013).Google Scholar
Tatsumisago, M., Narita, H., Minami, T., Tanaka, M., J. Am. Ceram. Soc., 66, C210 (1983).Google Scholar
Tatsumisago, M., Takano, R., Tadanaga, K., Hayashi, A., J. Power Sources, 270, 603 (2014).Google Scholar
Nagao, K., Hayashi, A., Tatsumisago, M., J. Ceram. Soc. Japan, 124, 915 (2016).Google Scholar
Tatsumisago, M., Takano, R., Nose, M., Nagao, K., Kato, A., Sakuda, A., Tadanaga, K., Hayashi, A., J. Ceram. Soc. Japan, 125, 433 (2017).Google Scholar
Nagao, K., Nose, M., Kato, A., Sakuda, A., Hayashi, A., Tatsumisago, M., Solid State Ionics, 308, 68 (2017).CrossRefGoogle Scholar
Mizushima, K., Jones, P. C., Wiseman, P. J., Goodenough, J. B., Mat. Res. Bull. 15, 783 (1980).CrossRefGoogle Scholar
Ohzuku, T., Makimura, Y., Chem. Lett., 7, 642 (2001).Google Scholar
Yabuuchi, N., Ohzuku, T., J. Power Sources, 119-121, 171 (2003).Google Scholar
Machida, N., Fuchida, R., Minami, T., J. Electrochem. Soc., 136, 2133 (1989).CrossRefGoogle Scholar
Hayashi, A., Matsuyama, T., Sakuda, A., Tatsumisago, M., Chem. Lett., 41, 886 (2012).Google Scholar
Matsuyama, T., Hayashi, A., Ozaki, T., Mori, S., Tatsumisago, M., J. Mater. Chem. A, 3, 14142 (2015).Google Scholar
Sabi, Y., Sato, S., Hayashi, S., Furuya, T., Kusanagi, S., J. Power Sources, 258, 54 (2014).Google Scholar
Nagao, K., Hayashi, A., Deguchi, M., Tsukasaki, H., Mori, S., Tatsumisago, M., J. Power Sources, 348, 1 (2017).Google Scholar
Obrovac, M. N., Mao, O., Dahn, J. R., Solid State Ionics, 112, 9 (1998).Google Scholar
Tatsumisago, M., Machida, N., Minami, T., J. Ceram. Soc. Japan, 95, 197 (1987).Google Scholar
Deng, Y., Eames, C., Fleutot, B., David, R., Chotard, J.-N., Suard, E., Masquelier, C., Islam, M. S., ASC Appl. Mater. Interfaces, 9, 7050 (2017).Google Scholar
Otoyama, M., Ito, Y., Hayashi, A., Tatsumisago, M., J. Power Sources, 302, 419 (2016).Google Scholar