Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T05:33:51.510Z Has data issue: false hasContentIssue false

Titanium nanoparticles phytosynthesized from Eichhornia crassipes leaf extract and their antimicrobial activity.

Published online by Cambridge University Press:  27 October 2020

Monserrat Velázquez-Hernández
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico S/N, Col. Agrícola Bellavista, C.P. 52140, Metepec, México. Departamento de Materia Condensada, Instituto de Física, Universidad Nacional Autónoma de México, Cd de México, C.P. 04510México.
Pablo Schabes-Retchkiman
Affiliation:
Departamento de Materia Condensada, Instituto de Física, Universidad Nacional Autónoma de México, Cd de México, C.P. 04510México.
Sonia Martínez-Gallegos*
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico S/N, Col. Agrícola Bellavista, C.P. 52140, Metepec, México.
V. Albiter
Affiliation:
Tecnológico Nacional de México/Instituto Tecnológico de Toluca, Av. Tecnológico S/N, Col. Agrícola Bellavista, C.P. 52140, Metepec, México.
Get access

Abstract

In this study, we reported an environmentally friendly technique for the synthesis of titanium nanoparticles using Eichhornia crassipes leaf extract as a non-toxic reducing agent and efficient stabilizer. Also the antimicrobial activity TiNPs against E. coli. Bacteriological test were performed on solid agar plates with different concentrations of TiNPs. On the other hand TiNPs were characterized by UV-visible spectroscopy, EDS (Dispersive Energy X-ray Spectroscopy), SEM (Scanning Electron Microscopy), and TEM (Transmission Electron Microscopy). It was found that TiNPs exhibit high crystallinity whit rutile titania structure. TEM analysis shows the nanoparticle size in the range from 22 to 44 nm, antimicrobial study was performed by plate count technique witch showed >99% mortality for E. coli bacteria studied after 24 h of incubation.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Singh, G., Joyce, E. M., Beddow, J., & Mason, T. J. (2012). Evaluation of Antibacterial Activity of ZnO Nanoparticles. Journal of Microbiology, Biotechnology and Food Sciences, 2(1), 106120.Google Scholar
Syahin Firdaus Aziz Zamri, M., & Sapawe, N. (2019). Effect of pH on Phenol Degradation Using Green Synthesized Titanium Dioxide Nanoparticles. Materials Today: Proceedings, 19, 13211326.Google Scholar
Arreola, A. R., Tizapa, M. S., Zurita, F., Morán-Lázaro, J. P., Valderrama, R. C., Rodríguez-López, J. L., & Carreon-Alvarez, A. (2020). Treatment of tequila vinasse and elimination of phenol by coagulation–flocculation process coupled with heterogeneous photocatalysis using titanium dioxide nanoparticles. Environmental Technology (United Kingdom), 41(8), 10231033.CrossRefGoogle ScholarPubMed
Sengul, A. B., & Asmatulu, E. (2020). Toxicity of metal and metal oxide nanoparticles: a review. Environmental Chemistry Letters, 18(5), 1659-1683.CrossRefGoogle Scholar
de Dicastillo, López, Guerrero Correa, C., B, M.. Martínez, F., Streitt, C., & José Galotto, M. (2020). Antimicrobial Effect of Titanium Dioxide Nanoparticles. In Antimicrobial Resistance (Vol. 20, Issue 1, pp. 9899). IntechOpen.Google Scholar
Zhu, X., Pathakoti, K., & Hwang, H.-M. (2019). Green synthesis of titanium dioxide and zinc oxide nanoparticles and their usage for antimicrobial applications and environmental remediation. In Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier Inc.Google Scholar
Moudgil, A., Deval, A. S., Dharne, M. S., Sarkar, D. M., Choudhari, A. S., & Chaudhari, B. P. (2020). Eichhornia crassipes Mediated Bioinspired Synthesis of Crystalline Nano Silver as an Integrated Medicinal Material: A Waste to Value Approach. Journal of Cluster Science, 5.Google Scholar
Manikandan, V., Lee, J. H., Velmurugan, P., Jayanthi, P., Chang, W. S., Park, Y. J., Cho, M., & Oh, B. T. (2018). Fabrication and characterization of TiO2-loaded Moringa oleifera gum-activated carbon and the photo-catalytic degradation of phosphate in aqueous solutions. Nanotechnology for Environmental Engineering, 3(1), 113.CrossRefGoogle Scholar
NOM-092-SSA1-1994. (1995). NOM-092-SSA1-1994, Bienes y servicios. Método para la cuenta de bacterias aerobias en placa. Diario Oficial de La Federación, 12, 16.Google Scholar
NOM-110-SSA1-1994. (1994). NOM-110-SSA1-1994, Bienes y servicios. Preparación y dilución de muestras de alimentos para su análisis microbiológico. 5.Google Scholar
Hassan, H., Omoniyi, K. I., Okibe, F. G., Nuhu, A. A., & Echioba, E. G. (2020). Assessment of Wound Healing Activity of Green Synthesized Titanium Oxide Nanoparticles using Strychnos spinosa and Blighia sapida. Journal of Applied Sciences and Environmental Management, 24(2), 197206.CrossRefGoogle Scholar
Ramprakash, B., & Incharoensakdi, A. (2020). Light-driven biological hydrogen production by Escherichia coli mediated by TiO2 nanoparticles. International Journal of Hydrogen Energy, 45(11), 62546261.CrossRefGoogle Scholar
Yu, C., Tang, J., Liu, X., Ren, X., Zhen, M., & Wang, L. (2019). Green biosynthesis of silver nanoparticles using eriobortya japonica (thumb) leaf extract for reductive catalysis. Materials, 12(1).Google Scholar
Irshad, M. A., Nawaz, R., Rehmnan, Zia ur, Imran, M., Ahmad, M., Ahmad, J., Inam, S., Razzaq, A., Rizwan, A., & Ali, M., S. (2020). Synthesis and characterization of titanium dioxide nanoparticles by chemical and grren methods and their antifungal activities against wheat rust. Chemosphere, 258, 127352.CrossRefGoogle Scholar
Mustapha, S. I., Aderibigbe, F. A., Adewoye, T. L., Mohammed, I. A., & Odey, T. O. (2020). Silver and titanium oxides for the removal of phenols from pharmaceutical wastewater. Materials Today: Proceedings.Google Scholar
Shanavas, S., Priyadharsan, A., Karthikeyan, S., Dharmaboopathi, K., Ragavan, I., Vidya, C., Acevedo, R., & Anbarasana, P. M. (2019). Green synthesis of titanium dioxide nanoparticles using Phyllanthus niruri leaf extract and study on its structural, optical and morphological properties. Materials Today: Proceedings, 26, 35313534.Google Scholar
Lefteh, M. S., Sourinejas, I., & Ghasemi, Z. (2020). Biosynmtheis of titanium dioxide nanoparticles from the mangrove (Avicennia marina) and investigation of its antibacterial activity. Journal of Mazandaran University of medical Sciences, 30(187), 15-27.Google Scholar
Harun, A. M., Noor, N. F. M., Yusoff, M. E., Abas, R., & Alam, M. K. (2020). The result of modified hydrothermal nanotitania extract to the Escherichia coli growth. Bangladesh Journal of Medical Science, 19(4), 705709.CrossRefGoogle Scholar
Alizadeh-Sani, M., Hamishehkar, H., Khezerlou, A., Maleki, M., Azizi-Lalabadi, M., Bagheri, V., Safaei, P., Azimi, T., Hashemi, M., & Ehsani, A. (2020). Kinetics Analysis and Susceptibility Coefficient of the Pathogenic Bacteria by Titanium Dioxide and Zinc Oxide Nanoparticles. Advanced Pharmaceutical Bulletin, 10(1), 5664.CrossRefGoogle ScholarPubMed
Ramprakash, B., & Incharoensakdi, A. (2020). Light-driven biological hydrogen production by Escherichia coli mediated by TiO2 nanoparticles. International Journal of Hydrogen Energy, 45(11), 62546261CrossRefGoogle Scholar