Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T17:58:33.588Z Has data issue: false hasContentIssue false

Synthesis of colloidal PbS nanosheets with nearly 100% success rate

Published online by Cambridge University Press:  15 May 2017

Shashini M Premathilaka
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403,USA Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403,USA
Zhoufeng Jiang
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403,USA Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403,USA
Antara Antu
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403,USA
Joey Leffler
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403,USA
Jianjun Hu
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
Ajit Roy
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
Liangfeng Sun*
Affiliation:
Department of Physics and Astronomy, Bowling Green State University, Bowling Green, OH 43403,USA Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403,USA
*
Get access

Abstract

We report a robust method by which colloidal PbS nanosheets can be synthesized with nearly 100% success rate. It is achieved by replacing the lead acetate by lead oxide for preparation of the lead precursor. Acetic acid either injected externally or produced during the reaction can significantly affect the growth of the nanosheets. The existence of water in the reaction solution makes the nanosheets smaller in lateral size while the purity of trioctylphosphine has no significant effect on the nanosheet growth.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schliehe, C. et al . Science 329, 550 (2010).CrossRefGoogle Scholar
Dogan, S., Bielewicz, T., Cai, Y. & Klinke, C. Appl. Phys. Lett. 101, 073102 (2012).CrossRefGoogle Scholar
Aerts, M. et al . Nat Commun 5, 3789 (2014).CrossRefGoogle Scholar
Frauke, G., Mirjam, V., Constanze, S., Thomas, B. & Christian, K. Zeitschrift für Physikalische Chemie 229, 139 (2014).Google Scholar
Bhandari, G. B. et al . Chem. Mater. 26, 5433 (2014).CrossRefGoogle Scholar
Bielewicz, T., Dogan, S. & Klinke, C. Small 11, 826 (2015).CrossRefGoogle Scholar
Dogan, S., Bielewicz, T., Lebedeva, V. & Klinke, C. Nanoscale 7, 4875 (2015).CrossRefGoogle Scholar
Jiang, Z. et al . Phys. Chem. Chem. Phys. 17, 23303 (2015).CrossRefGoogle Scholar
Zhang, H. et al . Chem. Mater. 28, 127 (2016).CrossRefGoogle Scholar
Ithurria, S. & Dubertret, B. J. Am. Chem. Soc. 130, 16504 (2008).CrossRefGoogle Scholar
Ithurria, S. et al . Nature Materials 10, 936 (2011).CrossRefGoogle Scholar
Houtepen, A. J., Koole, R., Vanmaekelbergh, D., Meeldijk, J. & Hickey, S. G. J. Am. Chem. Soc. 128, 6792 (2006).CrossRefGoogle Scholar
Hines, M. A. & Scholes, G. D. Adv Mater 15, 1844 (2003).CrossRefGoogle Scholar
Evans, C. M., Evans, M. E. & Krauss, T. D. J. Am. Chem. Soc. 132, 10973 (2010).CrossRefGoogle Scholar
Steckel, J. S., Yen, B. K. H., Oertel, D. C. & Bawendi, M. G. J. Am. Chem. Soc. 128, 13032 (2006).CrossRefGoogle Scholar