Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T17:33:07.182Z Has data issue: false hasContentIssue false

Synthesis and Characterization of Phosphonated Graphene Oxide and Sulfonated Poly(styrene-isobutylene-styrene) Composite Membranes

Published online by Cambridge University Press:  16 May 2018

Eduardo Ruiz-Colón*
Affiliation:
Chemical Engineering Dept., University of Puerto Rico, Mayagüez, PR 00681-9000
David Suleiman
Affiliation:
Chemical Engineering Dept., University of Puerto Rico, Mayagüez, PR 00681-9000
*
Get access

Abstract

Graphene oxide (GO) and its phosphonated analogue (pGO) have been incorporated into sulfonated poly(styrene-isobutylene-styrene) (SO3H SIBS) to generate membranes with enhanced water retention. The polymer nanocomposite membranes (PNMs) were prepared per SIBS sulfonation level (i.e., 38, 61, and 90 mole %), filler type (i.e., GO and pGO) and filler loading (i.e., 0.1, 0.5 and 1.0 wt.%). FT-IR and TGA confirmed the functionalization and incorporation of the fillers into SO3H SIBS. No significant changes were observed in the thermal stability or FTIR spectra of the PNMs after addition of the fillers. Dissimilar behaviors were observed for the water absorption capabilities (i.e., swelling ratio and water uptake) after incorporation of the fillers. The nanofillers enhanced the water absorption of the sulfonated polymer, possibly due to interconnections between the ionic groups. Therefore, the PNMs could not only potentially function as proton exchange membranes (PEMs) for several applications such as direct methanol fuel cells (DMFCs).

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pandey, R.P., Shukla, G., Manohar, M., Shahi, V.K., Adv. Colloid Interface Sci. 240, 1530 (2017). doi:10.1016/j.cis.2016.12.003.CrossRefGoogle Scholar
Song, H., Wang, Z., Yang, J., Jia, X., Zhang, Z., Chem. Eng. J. 324, 5162 (2017). doi:10.1016/j.cej.2017.05.016.CrossRefGoogle Scholar
Deng, P., Liu, Y., Luo, P., Wang, J., Liu, Y., Wang, D., et al., Mater. Lett. 194, 156159 (2017). doi:10.1016/j.matlet.2017.02.038.CrossRefGoogle Scholar
Salehi, H., Rastgar, M., Shakeri, A., Appl. Surf. Sci. 413, 99108 (2017). doi:10.1016/j.apsusc.2017.03.271.CrossRefGoogle Scholar
Zambianchi, M., Durso, M., Liscio, A., Treossi, E., Bettini, C., Capobianco, M.L., et al., Chem. Eng. J. 326, 130140 (2017). doi:10.1016/j.cej.2017.05.143.CrossRefGoogle Scholar
Aher, A., Cai, Y., Majumder, M., Bhattacharyya, D., Carbon N. Y. 116, 145153 (2017). doi:10.1016/j.carbon.2017.01.086.CrossRefGoogle Scholar
Zambare, R.S., Dhopte, K.B., Patwardhan, A. V., Nemade, P.R., Desalination. 403, 2435 (2017). doi:10.1016/j.desal.2016.02.003.CrossRefGoogle Scholar
Wu, W., Wang, J., Liu, J., Chen, P., Zhang, H., Huang, J., Int. J. Hydrogen Energy. 42, 1140011410 (2017). doi:10.1016/j.ijhydene.2017.01.129.CrossRefGoogle Scholar
Abouzari-Lotf, E., Ghassemi, H., Shockravi, A., Zawodzinski, T., Polymer. 52, 47094717 (2011). doi:10.1016/j.polymer.2011.08.020.CrossRefGoogle Scholar
Dimitrov, I., Takamuku, S., Jankova, K., Jannasch, P., Hvilsted, S., J. Memb. Sci. 450, 362368 (2014). doi:10.1016/j.memsci.2013.09.016.CrossRefGoogle Scholar
Li, W., Shen, C., Zhang, X., Kong, G., Chen, C., Mater. Res. Innov. 20, 524529 (2016). doi:10.1179/1433075X15Y.0000000081.CrossRefGoogle Scholar
Avilés-Barreto, S.L., Suleiman, D., J. Appl. Polym. Sci. 129, 22942304 (2013). doi:10.1002/app.38952.CrossRefGoogle Scholar
Chang, Y., Brunello, G.F., Hawley, M., Kim, Y.S., Disabb-Miller, M., Hickner, M.A., et al., Macromolecules. 8458–8469 (2011). doi:dx.doi.org/10.1021/ma201759z.Google Scholar
Avilés-Barreto, S.L., Suleiman, D., J. Memb. Sci. 474, 92102 (2015). doi:10.1016/j.memsci.2014.09.049.CrossRefGoogle Scholar
Lai, G.S., Lau, W.J., Goh, P.S., Ismail, A.F., Yusof, N., Tan, Y.H., Desalination. 387, 1424 (2016). doi:10.1016/j.desal.2016.03.007.CrossRefGoogle Scholar
He, D., Kou, Z., Xiong, Y., Cheng, K., Chen, X., Pan, M., et al., Carbon N. Y. 66, 312319 (2014). doi:10.1016/j.carbon.2013.09.005.CrossRefGoogle Scholar
Zarrin, H., Higgins, D., Jun, Y., Chen, Z., Fowler, M., J. Phys. Chem. C. 115, 2077420781 (2011). doi:10.1021/jp204610j.CrossRefGoogle Scholar
Kim, K., Bae, J., Lim, M.Y., Heo, P., Choi, S.W., Kwon, H.H., et al., J. Memb. Sci. 525, 125134 (2017). doi:10.1016/j.memsci.2016.10.038.CrossRefGoogle Scholar
Heo, Y., Im, H., Kim, J., J. Memb. Sci. 425–426, 1122 (2013). doi:10.1016/j.memsci.2012.09.019.CrossRefGoogle Scholar
Wu, W., Li, Y., Chen, P., Liu, J., Wang, J., Zhang, H., ACS Appl. Mater. Interfaces. 8, 588599 (2016). doi:10.1021/acsami.5b09642.CrossRefGoogle Scholar
Ye, Y.S., Cheng, M.Y., Xie, X.L., Rick, J., Huang, Y.J., Chang, F.C., et al., J. Power Sources. 239, 424432 (2013). doi:10.1016/j.jpowsour.2013.03.021.CrossRefGoogle Scholar