Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T06:41:26.107Z Has data issue: false hasContentIssue false

The Subtle Kinetics of Arrested Spinodal Decomposition: Colloidal Gels and Porous Glasses

Published online by Cambridge University Press:  04 December 2018

José Manuel Olais-Govea*
Affiliation:
Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, San Luis Potosí, San Luis Potosí, 78211, México Writing Lab, TecLabs, Vicerrectoría de Investigación y Transferencia de Tecnología, Tecnólogico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico
Leticia López-Flores
Affiliation:
Instituto de Física “Manuel Sandoval Vallarta”, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, 78000, México
Magdaleno Medina-Noyola
Affiliation:
Instituto de Física “Manuel Sandoval Vallarta”, Universidad Autónoma de San Luis Potosí, San Luis Potosí, San Luis Potosí, 78000, México
*
Get access

Abstract

The non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory of irreversible processes in liquids has been proposed as a theoretical framework capable of predicting the age- and preparation-dependent properties of highly ubiquitous non-equilibrium amorphous solids, such as like glasses and gels. By this formalism, we discuss the main kinetic features of the irreversible relaxation of simple liquids involved in the arrested spinodal decomposition of suddenly and deeply quenched. At some lower temperature we identify, by means of a latency time within which particles retain a finite apparently stationary mobility, the crossover from full phase separation to arrested spinodal decomposition which leads to recognize the onset of gelation.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cahn, J. W. and Hilliard, J. E.. Free energy of a nonuniform system. III. Nucleation in a two component incompressible fluid. J. Chem. Phys. 31, 688 (1959).CrossRefGoogle Scholar
Cook, H. E.. Brownian motion in spinodal decomposition. Acta Metall. 18, 297 (1970).CrossRefGoogle Scholar
Furukawa, H.. A dynamic scaling assumption for phase separation. Adv. Phys., 34, 703 (1985).CrossRefGoogle Scholar
Langer, J. S., Baron, M., and Miller, H. D.. New computational method in the theory of spinodal decomposition. Phys. Rev. A 11, 1417 (1975).CrossRefGoogle Scholar
Dhont, J. K. G.. Spinodal decomposition of colloids in the initial and intermediate stages. J. Chem. Phys. 105, 5112 (1996).CrossRefGoogle Scholar
Lu, P. J. et al. Gelation of particles with short-range attraction. Nature 22, 499 (2008).CrossRefGoogle Scholar
Sanz, E., Leunissen, M. E., Fortini, A., van Blaaderen, A., and Dijkstra, M.. Gel formation in suspensions of oppositely charged colloids: mechanism and relation to the equilibrium phase diagram. J. Phys. Chem. B 112, 10861 (2008).CrossRefGoogle ScholarPubMed
Gibaud, T. and Schurtenberger, P.. A closer look at arrested spinodal decomposition in protein solutions. J. Phys. Condens. Matter 21, 322201 (2009).CrossRefGoogle Scholar
Di Michele, L. et al. Aggregation dynamics, structure, and mechanical properties of bigels. Soft Matter 10, 3633 (2014).CrossRefGoogle ScholarPubMed
Gao, Y., Kim, J. and Helgeson, M. E.. Microdynamics and arrest of coarsening during spinodal decomposition in thermoreversible colloidal gels. Soft Matter, 11, 6360-6370 (2015).CrossRefGoogle ScholarPubMed
Zaccarelli, E.. Colloidal gels: equilibrium and non-equilibrium routes. J. Phys. Condens. Matter 19, 323101 (2007).CrossRefGoogle Scholar
Lodge, J. F. M. and Heyes, D. M.. Brownian dynamics simulations of Lennard-Jones gas/liquid phase separation and its relevance to gel formation. J. Chem. Soc., Faraday Trans., 93, 437 (1997).CrossRefGoogle Scholar
Kob, W. and Andersen, H. C.. Scaling behavior in the β-Relaxation regime of a supercooled Lennard-Jones mixture. Phys. Rev. Lett. 73, 1376 (1994).CrossRefGoogle ScholarPubMed
Testard, V., Berthier, L. and Kob, W.. Intermittent dynamics and logarithmic domain growth during the spinodal decomposition of a glass-forming liquid. J. Chem. Phys. 140, 164502 (2014).CrossRefGoogle ScholarPubMed
Berthier, L. and Biroli, G.. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83 (2011).CrossRefGoogle Scholar
Olais-Govea, J. M. et al. Nonequilibrium kinetics of the transformation of liquids into physical gels. Phys. Rev. E, 98040601(R) (2018).Google Scholar
Ioannidou, Katerina et al. Nature Communications volume 7, 12106 (2016).CrossRefGoogle Scholar
Olais-Govea, J. M., López-Flores, L., and Medina-Noyola, M.. Non-equilibrium theory of arrested spinodal decomposition. J. Chem Phys. 143, 174505 (2015).CrossRefGoogle ScholarPubMed
Medina-Noyola, M. and Ramírez-González, P. E.. Non-equilibrium relaxation and near-arrest dynamics in colloidal suspensions. J. Phys. Cond. Matter 21: 504103 (2009).CrossRefGoogle ScholarPubMed
Ramírez-González, P. E. and Medina-Noyola, M.. General nonequilibrium theory of colloid dynamics. Phys. Rev. E 82, 061503 (2010).CrossRefGoogle ScholarPubMed
Ramírez-González, P. E. and Medina-Noyola, M.. Aging of a homogeneously quenched colloidal glass-forming liquid. Phys. Rev. E 82, 061504 (2010).CrossRefGoogle ScholarPubMed
Sánchez-Díaz, L. E., Ramírez-González, P. E. and Medina-Noyola, M.. Equilibration and aging of dense soft-sphere glass-forming liquids. Phys. Rev. E 87, 052306 (2013).CrossRefGoogle ScholarPubMed
Sánchez-Díaz, L. E., Lázaro-Lázaro, E., Olais-Govea, J. M. and Medina-Noyola, M.. Non-equilibrium dynamics of glass-forming liquid mixtures. J. Chem Phys. 140, 234501 (2014).CrossRefGoogle ScholarPubMed
Juárez-Maldonado, R. et al. Simplified self-consistent theory of colloid dynamics. Phys. Rev. E 76, 062502 (2007).CrossRefGoogle ScholarPubMed
Perez-Ángel, G. et al. Equilibration of concentrated hard-sphere fluids. Phys. Rev. E 83, 060501(R) (2011).CrossRefGoogle ScholarPubMed
Sharma, R. V. and Sharma, K. C.. The structure factor and the transport properties of dense fluids having molecules with square well potential, a possible generalization. Physica A 89, 213 (1977).CrossRefGoogle Scholar
Khalil, N., de Candia, A., Fierro, A., Cimarra, M. P. and Coniglio, A.. Dynamical arrest: interplay of glass and gel transitions. Soft Matter, 10, 4800 (2014).CrossRefGoogle ScholarPubMed
Chauduri, P., Hurtado, P. I., Berthier, L. and Kob, W.. Relaxation dynamics in a transient network fluid with competing gel and glass phases. J. Chem Phys. 142, 174503 (2015).CrossRefGoogle Scholar