Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T05:13:58.182Z Has data issue: false hasContentIssue false

Study Of Thermal And Mechanical Properties Of Clay/Polymer Nanocomposite Synthesized Via Modified Solution Blending

Published online by Cambridge University Press:  04 September 2017

Oscar Hernandez-Guerrero*
Affiliation:
Facultad de Ciencias Químicas e Ingeniería, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Mor.62209, MEXICO. Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO.
Rubén Castillo-Pérez
Affiliation:
Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO. Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F.04510, MEXICO. Posgrado de Ingeniería, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F, 04519, MEXICO.
Mireya Lizbeth Hernández-Vargas
Affiliation:
Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO. Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F.04510, MEXICO. Posgrado de Ingeniería, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F, 04519, MEXICO.
Bernardo Fabián Campillo-Illanes
Affiliation:
Instituto de Ciencias Físicas, UNAM, Av. Universidad s/n, Col. Chamilpa, Cuernavaca, Morelos, 62210, MEXICO. Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria D.F.04510, MEXICO.
*
*To whom correspondence should be addressed: [email protected][email protected]
Get access

Abstract

The incorporation of layered nano-silicates in polymer matrix greatly enhances the properties of the polymer. At present, there are many applications of polymer nanocomposites including coatings and architectural, they are also parts of automotive and construction industry among others. The acrylics employed at the present study were based on butyl acrylate (BA), styrene (STY), and methacrylic acid (MAA), and the nano-clay was Na-montomorillonite (MMT). The MMT clay was added to the polymer, which is the mixing matrix in a physical state solution called blend. Furthermore, their mechanical, thermal and wettability of especially prepared acrylic montmorillonite (MMT) nanocomposites were performed. By increasing the MMT in the polymer matrix concentration the Young’s modulus tends to increase it by an order of magnitude. However, by Differential Scanning Calorimetry (DSC), the thermograms show an increase in the glass transition temperature of nanocomposites for all weight percentages of MMT. Also, the wetting angle was determined, in order to know how much water is retained on the surface of the nanocomposite; the results showed that by increasing the particle of nano clay in the polymer matrix will induce a hydrophobic property to the nanocomposite.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Schweitzer, PA. Paint and Coatings: Application and Corrosion Resistance, Taylor & Francis Group, USA, 2006.Google Scholar
Chorng-Shyan, C, Principles and Applications of Emulsion Polymerization, John Wiley & Sons, USA, 2008.Google Scholar
Hernandez-Vargas, ML, Romo-Uribe, A, “Synthesis of hybrid nanostructured coatings from metallic oxide nanoparticles via emulsion polymerization”, Polymeric Materials: Science & Engineering 108, 7778 (2013).Google Scholar
Hernández-Vargas, ML, Valerio-Cárdenas, C, Romo-Uribe, A. Nanocomposite coatings incorporating nanosilica particles into polyacrylics. Polymer Chemistry Proceedings 2011, American Chemical Society.Google Scholar
Romero-Guzmán, ME, Romo-Uribe, A, Ovalle-García, E, Olayo, R, Cruz-Ramos, C. “Microstructure and dynamic mechanical analysis of extruded layered silicate PVC nanocomposites”, Polym. Adv. Technol. (2008). 19, 11681176.CrossRefGoogle Scholar
Castillo-Perez, R, Romo-Uribe, A (2012) “Diseño y construcción de un instrumento para medir ángulo de contacto”, Memorias del XVIII Congreso Internacional Anual de la SOMIM, ISBN: 978-607-95309-6-9: 772779.Google Scholar
The National Institutes of Health, USA, developed ImageJ®. http://rsb.info.nih.gov/ij (Accessed on: 21 July 2017)Google Scholar
Dlamini, D.S, Mishra, S.B., Mishra, A.K., Mamba, B.B. “Comparative studies of the morphological and thermal properties of clay/polymer nanocomposites synthesized via melt blending and modified solution blendind methods” J. Compos. Mater. (2011).CrossRefGoogle Scholar
Cardoso, J, Romo-Uribe, A, Flores, A, “Nanostructure and viscoelasticity of layered silicate nanocomposite-electrolyte supports”.Google Scholar
Appl Polym Sci 123, 944-955 (2012) Romero-Guzmán, ME, Flores, O, Flores, A, Romo-Uribe, A, Alvarado-Tenorio, B and Campillo, B, “Cold-drawn induced microstructure in PVC-bentonite nanocomposites”, Polym. Adv. Technol. 22, 836846 (2011).CrossRefGoogle Scholar
Romero-Guzmán, ME, Romo-Uribe, A, Zárate-Hernández, BM, Cruz-Silva, R, “Viscoelastic properties of POSS-styrene nanocomposite blended with polystyrene”,Rheo. Acta. 48(6) 641652 (2009).CrossRefGoogle Scholar