Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T15:29:17.607Z Has data issue: false hasContentIssue false

Structural and Optical Properties of Al0.30Ga0.70N/AlN Multiple Quantum Wells Grown on Vicinal 4H p-SiC Substrates by Molecular Beam Epitaxy

Published online by Cambridge University Press:  19 December 2016

Gordie Brummer*
Affiliation:
Department of Electrical and Computer Engineering and Photonics Center, Boston University, Boston Massachusetts, 02215, U.S.A.
Denis Nothern
Affiliation:
Department of Materials Science and Engineering and Photonics Center, Boston University, Boston Massachusetts, 0215, U.S.A
T.D. Moustakas
Affiliation:
Department of Electrical and Computer Engineering and Photonics Center, Boston University, Boston Massachusetts, 02215, U.S.A. Department of Materials Science and Engineering and Photonics Center, Boston University, Boston Massachusetts, 0215, U.S.A
*
Get access

Abstract

AlGaN based multiple quantum wells (MQWs) were grown on 8° vicinal 4H p-SiC substrates by plasma-assisted molecular beam epitaxy. The MQWs were designed to emit near 300 nm using the wurtzite k.p model. The MQW periodicity and strain state were measured with X-ray diffraction. The optical properties were characterized with temperature dependent photoluminescence (PL). The internal quantum efficiency was estimated from the ratio of room temperature to 18K integrated PL intensity. Internal quantum efficiency up to 48% was achieved. These data are encouraging for future vertical and inverted ultraviolet light emitting diodes grown on p-SiC substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Khan, A., Balakrishnan, K. and Katona, T., Nat. Photon. 2, 77 (2008).CrossRefGoogle Scholar
Moustakas, T. D., Liao, Y., Kao, C. K., Thomidis, C., Bhattacharyya, A., Bhattarai, D. and Moldawer, A., Proc. SPIE 8278 82780L-1 (2012).Google Scholar
Shur, M., and Gaska, R. IEEE Trans. Electron Dev. 57, 12 (2009).CrossRefGoogle Scholar
Zhou, L., Epler, J. E., Krames, M. R., Goetz, W., Gherasimova, M., Ren, Z., Han, J., Kneissl, M., Johnson, N. M., Appl. Phys. Lett. 89, 241113 (2006).CrossRefGoogle Scholar
Adivarahan, V., Heidari, A., Zhang, B., Fareed, Q., Islam, M., Hwang, S., Balakrishnan, K., Khan, A., Appl. Phys. Express 2, 092102 (2009).Google Scholar
Li, Z., Lestrade, M., Xiao, Y., and Li, Z. S., Jpn. J. Appl. Phys. 50, 080212 (2011).CrossRefGoogle Scholar
Wierer, J. J., David, A., and Megens, M. M., Nat. Photon. 3, 163 (2009).CrossRefGoogle Scholar
Zhang, W., Nikiforov, A. Y., Thomidis, C., Woodward, J., Sun, H., Kao, C. K., Bhattarai, D., Moldawer, A., Zhou, L., Smith, D. J., Moustakas, T. D., Vac, J.. Sci. Technol. B 30, 02B119-5 (2012).Google Scholar
Iliopoulos, E., and Moustakas, T. D., Appl. Phys. Lett. 81, 295 (2002).CrossRefGoogle Scholar
Chuang, S. L., and Chang, C. S., Phys. Rev. B, 54, 2491 (1996).CrossRefGoogle Scholar
Chuang, S. L., and Chang, C. S., Semicond. Sci. Technol. 12, 252 (1997).Google Scholar
Vurgaftman, I., and Meyer, J. R., in Nitride Semiconductor Devices Principles and Simulations, edited by Piprek, J. (John Wiley and Sons, 2007) p. 1349.CrossRefGoogle Scholar
Mickevicius, J., Tamulaitis, G., Shur, M., Shatalov, M., Yang, J., Gaska, R., Appl. Phys. Lett. 101, 211902 (2012).CrossRefGoogle Scholar
Srikant, V., Speck, J. S., and Clarke, D. R., J. Appl. Phys. 82, 4286 (1997).Google Scholar
Suda, J., Miyake, H., Amari, K., Nakano, Y., and Kimoto, T., Jap. J. Appl. Phys. 48, 020202 (2009).Google Scholar
Huang, X. R., Bai, J., Dudley, M., Dupuis, R. D., and Chowdhury, U., Appl. Phys. Lett. 86, 211916 (2005).Google Scholar
Nakagawa, H., Tanaka, S., and Suemune, I., Phys. Rev. Lett. 91, 226107 (2003).Google Scholar
Liao, Y., PhD. Thesis, Boston University, 2011.Google Scholar