Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T03:29:25.668Z Has data issue: false hasContentIssue false

Solution-processed Nanocrystal Based Thin Films as Hole Transport Materials in Cadmium Telluride Photovoltaics

Published online by Cambridge University Press:  06 April 2018

Ebin Bastola*
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization (PVIC), Department of Physics and Astronomy, University of Toledo, Toledo, Ohio43606, USA
Kamala Khanal Subedi
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization (PVIC), Department of Physics and Astronomy, University of Toledo, Toledo, Ohio43606, USA
Khagendra P. Bhandari
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization (PVIC), Department of Physics and Astronomy, University of Toledo, Toledo, Ohio43606, USA
Randy J. Ellingson
Affiliation:
Wright Center for Photovoltaics Innovation and Commercialization (PVIC), Department of Physics and Astronomy, University of Toledo, Toledo, Ohio43606, USA
*
Get access

Abstract

The cadmium telluride (CdTe) photovoltaic (PV) comprise an efficient and cost-effective technology for harvesting solar energy. However, device efficiency remains limited in part by low-open circuit voltage (VOC) and fill factor (FF) due to inefficient transport of photo-generated charge carriers. Given the deep valence band of CdTe, the use of copper/gold (Cu/Au) as a back contact serves primarily to narrow the width of the inherent Schottky junction evident in CdTe solar cells (in our laboratory, Cu/Au has been used as a standard back contact). For efficient transport of carriers to and into the back contact, a hole transport layer (HTL) is desired with valence band edge comparable to that of CdTe (∼ -5.9 eV). Here, we report solution-processed nanocrystal (NCs) based thin films as HTLs in CdTe solar cells. The earth abundant materials we discuss include iron pyrite (FeS2), nickel-alloyed iron pyrite (NixFe1-xS2), zinc copper sulfide (ZnxCu1-xS) nanocomposites, and perovskite-based films. The FeS2 and NixFe1-xS2 NCs are synthesized by a hot-injection route, and thin films are fabricated by drop-casting, and spin-coating techniques using colloidal NCs. ZnxCu1-xS thin films are fabricated by chemical bath deposition. These NC-based thin films are applied and studied as the HTLs in CdTe devices. On using these materials, the device performance can be increased up to 10% compared to the standard Cu/Au back contact. Here, we discuss the benefits, challenges, and opportunities for these back contact materials in CdTe photovoltaics.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kholmicheva, N., Moroz, P., Rijal, U., Bastola, E., Uprety, P., Liyanage, G., Razgoniaev, A., Ostrowski, A. D. and Zamkov, M., Acs Nano 8(12), 1254912559 (2014).CrossRefGoogle Scholar
Kim, G.-H., García de Arquer, F. P., Yoon, Y. J., Lan, X, Liu, M., Voznyy, O., Yang, Z., Fan, F., Ip, A. H., Kanjanaboos, P., Hoogland, S., Kim, J. Y. and Sargent, E. H., Nano Lett. 15(11), 76917696 (2015).CrossRefGoogle Scholar
Han, Z., Qiu, F., Eisenberg, R., Holland, P. L. and Krauss, T. D., Science 338 (6112), 1321 (2012).CrossRefGoogle Scholar
Bastola, E., Bowling Green State University, 2014.Google Scholar
Moroz, P., Liyanage, G., Kholmicheva, N. N., Yakunin, S., Rijal, U., Uprety, P., Bastola, E., Mellott, B., Subedi, K. and Sun, L., Chem. Mater. 26(14), 42564264 (2014).CrossRefGoogle Scholar
Jain, P. K., Huang, X., El-Sayed, I. H. and El-Sayed, M. A., Acc. Chem. Res. 41(12), 15781586 (2008).CrossRefGoogle Scholar
Bhandari, K. P., Koirala, P., Paudel, N. R., Khanal, R. R., Phillips, A. B., Yan, Y., Collins, R. W., Heben, M. J. and Ellingson, R. J., Sol. Energy Mater. Sol. Cells 140, 108114 (2015).CrossRefGoogle Scholar
Zeng, X., Zhou, T., Leng, C., Zang, Z., Wang, M., Hu, W., Tang, X., Lu, S., Fang, L. and Zhou, M., J. Mater. Chem. A 5(33), 1749917505 (2017).CrossRefGoogle Scholar
Huckaba, A. J., Sanghyun, P., Grancini, G., Bastola, E., Taek, C. K., Younghui, L., Bhandari, K. P., Ballif, C., Ellingson, R. J. and Nazeeruddin, M. K., Chemistryselect 1(16), 53165319 (2016).CrossRefGoogle Scholar
Geisthardt, R. M., Topič, M. and Sites, J. R., IEEE J. Photovolt. 5(4), 12171221 (2015).CrossRefGoogle Scholar
Munshi, A. H., Kephart, J., Abbas, A., Raguse, J., Beaudry, J.-N., Barth, K., Sites, J., Walls, J. and Sampath, W., IEEE J. Photovolt. 8(1), 310314 (2018).CrossRefGoogle Scholar
Corwine, C. R., Pudov, A. O., Gloeckler, M., Demtsu, S. H. and Sites, J. R., Sol. Energy Mater. Sol. Cells 82(4), 481489 (2004).Google Scholar
Freeouf, J. L. and Woodall, J. M., Appl. Phys. Lett. 39(9), 727729 (1981).CrossRefGoogle Scholar
de Boer, B., Hadipour, A., Mandoc, M. M., van Woudenbergh, T. and Blom, P. W. M., Adv. Mater. 17(5), 621625 (2005).CrossRefGoogle Scholar
Bhandari, K. P., Tan, X., Zereshki, P., Alfadhili, F. K., Phillips, A. B., Koirala, P., Heben, M. J., Collins, R. W. and Ellingson, R. J., Sol. Energy Mater. Sol. Cells 163, 277284 (2017).CrossRefGoogle Scholar
Ennaoui, A., Fiechter, S., Pettenkofer, C., Alonso-Vante, N., Büker, K., Bronold, M., Höpfner, C. and Tributsch, H., Sol. Energy Mater. Sol. Cells 29(4), 289370 (1993).CrossRefGoogle Scholar
Bhandari, K. P., Roland, P. J., Kinner, T., Cao, Y., Choi, H., Jeong, S. and Ellingson, R. J., J. Mater. Chem. A 3(13), 68536861 (2015).CrossRefGoogle Scholar
Hu, J., Zhang, Y., Law, M. and Wu, R., J. Am. Chem. Soc. 134(32), 1321613219 (2012).CrossRefGoogle Scholar
Kinner, T., Bhandari, K. P., Bastola, E., Monahan, B. M., Haugen, N. O., Roland, P. J., Bigioni, T. P. and Ellingson, R. J., J. Phys. Chem. C 120(10), 57065713 (2016).CrossRefGoogle Scholar
Bastola, E., Bhandari, K. P. and Ellingson, R. J., J. Mater. Chem. C 5(20), 49965004 (2017).CrossRefGoogle Scholar
Xu, X., Bullock, J., Schelhas, L. T., Stutz, E. Z., Fonseca, J. J., Hettick, M., Pool, V. L., Tai, K. F., Toney, M. F., Fang, X., Javey, A., Wong, L. H. and Ager, J. W., Nano Lett. 16(3), 19251932 (2016).CrossRefGoogle Scholar
Song, T., Kanevce, A. and Sites, J. R., J. Appl. Phys. 119(23), 233104 (2016).CrossRefGoogle Scholar
Swanson, D. E., Abbas, A., Munshi, A. H., Drayton, J. A., Raguse, J. M., Geisthardt, R. M., Sites, J. R. and Sampath, W. S., MRS Proceedings 1771, 133138 (2015).CrossRefGoogle Scholar