Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T09:17:43.907Z Has data issue: false hasContentIssue false

Softer is Harder: What Differentiates Soft Robotics from Hard Robotics?

Published online by Cambridge University Press:  05 February 2018

Gursel ALICI*
Affiliation:
School of Mechanical, Materials, Mechatronic and Biomedical Engineering ARC Center of Excellence for Electromaterials Science University of Wollongong, 2522NSW, Australia
Get access

Abstract

This paper reports on what differentiates the field of soft (i.e. soft-bodied) robotics from the conventional hard (i.e. rigid-bodied) robotics. The main difference centres on seamlessly combining the actuation, sensing, motion transmission and conversion mechanism elements, electronics and power source into a continuum body that ideally holds the properties of morphological computation and programmable compliance (i.e. softness). Another difference is about the materials they are made of. While the hard robots are made of rigid materials such as metals and hard plastics with a bulk elastic modulus of as low as 1 GPa, the monolithic soft robots should be fabricated from soft and hard materials or from a strategic combination of them with a maximum elasticity modulus of 1 GPa. Soft smart materials with programmable mechanical, electrical and rheological properties, and conformable to additive manufacturing based on 3D printing are essential to realise soft robots. Selecting the actuation concept and its power source, which is the first and most important step in establishing a robot, determines the size, weight, performance of the soft robot, the type of sensors and their location, control algorithm, power requirement and its associated flexible and stretchable electronics. This paper outlines how crucial the soft materials are in realising the actuation concept, which can be inspired from animal and plant movements.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rus, D. and Tolley, M. T., Nature, 521, no. 7553, 467475, (2015).Google Scholar
Kim, S., Laschi, C., and Trimmer, B., Trends in Biotechnology, 31:5, 287294, (2013).CrossRefGoogle Scholar
Bauer, S., Bauer-Gogonea, S., Graz, I., Kaltenbrunner, M., Keplinger, C., and Schwoediauer, R., Adv. Mater. 26, 149162, (2014).CrossRefGoogle Scholar
Alici, G., Editorial for Special Issue, http://www.mdpi.com/journal/robotics/special_issues/soft_robotic, accessed on May 20, 2016.Google Scholar
Chirikjian, G. S. and Burdick, J. W., IEEE Transactions on Robotics and Automation, 11:6, 781793, (2005).CrossRefGoogle Scholar
Kang, R., Branson, D. T., Zheng, T., Guglielmino, E., and Caldwell, D. G., Bioinspiration & biomimetics, 8:3, p. 036008, (2013).Google Scholar
Webster, R. J. and Jones, B. A., The International Journal of Robotics Research, 29:13, 16611683, (2010).Google Scholar
Pfeifer, R., Lungarella, M., and Iida, F., Communications of ACM, 55:11, 7687, (2012).CrossRefGoogle Scholar
Hauser, H., Ijspeert, A. J., Fuchslin, R. M., Pfeifer, R., and Mass, W., Biological Cybernetics, 105, 355370, (2011).Google Scholar
Mutlu, R., Alici, G., in het Panhuis, M., and Spinks, G.M, Soft Robotics, 3:3, 120133, (2016).Google Scholar
Huber, J. E., Fleck, N. A. and Ashby, M. F., The Royal Society: 2185, (1997).Google Scholar
Minh, T. V., Tjahjowidodo, T., Ramon, H., and Brussel, H. V., IEEE/ASME Transactions on Mechatronics, 16:1, 177186, (2011).Google Scholar
ISO 8373:2012, Robots and robotic devices — Vocabulary, https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en, accessed on June 7, 2017.Google Scholar
Onal, C. D., and Rus, D., Bioinspiration & Biomimetics, 8:2, 026003, 2013.Google Scholar
Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimbock, T., Wolf, S. and Hirzinger, G., IEEE Robot. Autom. Mag. 15, 2030, (2008).Google Scholar
Ewoldt, R. H., Soft Robotics, 1220, (2013).Google Scholar
Alici, G., Mutlu, R., Melling, D., Jager, E. W. H. and Kaneto, K., In Electromechanically Active Polymers: A Concise Reference, edited by Carpi, F., Springer International Publishing, (2016).Google Scholar
Majidi, C., Soft Robotics, 511, (2013).Google Scholar
McEvoy, M. A. and Correll, N., Science 347, DOI: 10.1126/science.1261689, (2015).CrossRefGoogle ScholarPubMed
Galloway, K. C., Becker, K. P., Phillips, B., Kirby, J., Licht, S., Tchernov, D., Wood, R. J., and Gruber, D. F., Soft Robotics, 3, 2333, (2016).Google Scholar
Mosadegh, B., Polygerinos, P., Keplinger, C., Wennstedt, S., Shepherd, R. F., Gupta, U., Shim, J., Bertoldi, K., Walsh, C. J. and Whitesides, G. M., Advanced Functional Materials, 24, 21632170, (2014).CrossRefGoogle Scholar
Suzumori, K., Iikura, S., and Tanaka, H., Robotics and Automation, Proceedings., 1991 IEEE International Conference on, 16221627, (1991)Google Scholar
Wakimoto, S., Suzumori, K., and Ogura, K., Advanced Robotics 25, 13111330, (2011).Google Scholar
Shepherd, R. F., Stokes, A. A., Freake, J., Barber, J., Snyder, P. W., Mazzeo, A. D., Cademartiri, L., Morin, S. A., and WhitesidesG, M. G, M., Angewandte Chemie International Edition, 52, 28922896, (2013).Google Scholar
Mutlu, R., Alici, G., and Li, W., IEEE/ASME Transactions on Mechatronics, 21, 14671478, (2016).Google Scholar
Nguyen, C. H., Alici, G., and Mutlu, R., ASME Journal of Mechanical Design, 136, 061009–061009-9, (2014).Google Scholar
Yuk, H., Lin, S., Ma, C., Takaffoli, M., Fang, N. X., and Zhao, X., Nature Communications, 8, 14230, 02/01/online. (2017).CrossRefGoogle Scholar
Jin, H., Dong, E., Alici, G., Mao, S., Min, X., Liu, C., Low, K. H., and Yang, J., Bioinspiration & Biomimetics,11, 056012, (2016).Google Scholar
Yap, H.K., Ng, H.Y., Yeow, C.-H., Soft Robotics 3(3), 144158, (2016).Google Scholar
Agarwal, G., Besuchet, N., Audergon, B. and Paik, J., Sci. Rep. 6, 34224; doi: 10.1038/srep34224 (2016).Google Scholar
Yang, D., Mosadegh, B., Ainla, A., Lee, B., Khashai, F., Suo, Z., Bertoldi, K., and Whitesides, G. M., Advanced Materials, 27, 63236327, (2015).Google Scholar
Bakarich, S. E., Gorkin, R., in het Panhuis, M. and Spinks, G. M., Macromol Rapid Commun, 36:12111217, (2015).Google Scholar
Katzschmann, R. K, Marchese, A. D., and Rus, D., In Proc. International Symposium on Experimental Robotics, (2014).Google Scholar
Sumbre, G., Fiorito, G., Flash, T., and Hochner, B., Curr. Biol. 16, 767772, 2006.Google Scholar
Zhang, C and Rossi, C, Bioinspir. Biomim. 12 025005, (2017).Google Scholar
Full, R. J., In The Handbook of Comparative Physiology, Dantzler, W, ed., 853930, Oxford University Press, Oxford ( 1997).CrossRefGoogle Scholar
Kier, W. M. and Smith, K. K., Zoological Journal of the Linnean Society, 83, 307324, (1985).Google Scholar
Dickinson, M. H., Farley, C. T., Full, R. J., Koehl, M.A. R., Cram, R. and Lehman, S., Science, 288, I 00–106 (2000).Google Scholar
Madden, J. D. W., Vandesteeg, N. A., Anquetil, P., Madden, P. G., Takshi, A., Pytel, R. Z., Lafontaine, S. R., Wieringa, P., and Hunter, I. W., IEEE J. Oceanic Eng, 29 (3), 7006–28 (2004)Google Scholar
Trimmer, B., Soft Robotics. 4:1, 12. https://doi.org/10.1089/soro.2017.29011.bat, (2017)Google Scholar
Miriyev, A., Stack, K., K., and Lipson, H., Nat. Commun. 18, doi:10.1038/s41467-017-00685-3, (2017).Google Scholar
Meijer, K., Bar-Cohen, Y., and Full, R. J., SPIE Press, 2546, (2003).Google Scholar
Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B., Onal, C. D., Petersen, K., Cianchetti, M., Tolley, M. T. and Shepherd, R. F., Advanced Engineering Materials, DOI: 10.1002/adem.201700016, (2017).Google Scholar
Alici, G. and Daniel, R. W., International Journal of Robotics and Automation, 11:2, 6273, (1996).Google Scholar
Liu, F.L., Alici, G., Zhang, B., Beirne, S., and Li, W., Smart Materials and Structures, 24, 035015, (2015).Google Scholar
Alici, G., and Huynh, N. N., IEEE/ASME Transactions on Mechatronics, 12, 1, 7384, (2007).Google Scholar
Gaihre, B., Alici, G., Spinks, G. M., and Cairney, J. M., IEEE/ASME Journal of Microelectromechanical Systems, 21:3, 574585, (2012).Google Scholar
Li, W. H., Zhou, Y., and Tian, T. F., Rheol Acta, 49, 733740, DOI 10.1007/s00397-010-0446-9, (2010).CrossRefGoogle Scholar
Li, W.H., Du, H. and Guo, N.Q., Materials Science and Engineering A, 371, 915, (2004).Google Scholar