Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T02:30:48.273Z Has data issue: false hasContentIssue false

Sodium Induced Morphological Changes of Carbon Coated TiO2 Anatase Nanoparticles – High-Performance Materials for Na-Ion Batteries

Published online by Cambridge University Press:  22 May 2020

G. Greco
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie Gmb (HZB), Hahn-Meitner-Platz 1, D-14109Berlin, Germany
S. Passerini
Affiliation:
Helmholtz Institute Ulm (HIU), Helmholtzstr. 11, 8901Ulm, Germany Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021Karlsruhe, Germany
Get access

Abstract

The most promising candidate as an everyday alternative to lithium-ion batteries (LIBs) are sodium-ion batteries (NIBs). This is not only due to Na abundance, but also because the main principles and cell structure are very similar to LIBs. Due to these benefits, NIBs are expected to be used in applications related to large-scale energy storage systems and other applications not requiring top-performance in terms of volumetric capacity. One important issue that has hindered the large scale application of NIBs is the anode material. Graphite and silicon, which have been widely applied as anodes in NIBs, do not show great performance. Hard carbons look very promising in terms of their abundance and low cost, but they tend to suffer from instability, in particular over the long term. In this work we explore a carbon-coated TiO2 nanoparticle system that looks very promising in terms of stability, abundance, low-cost, and most importantly that safety of the cell, since it does not suffer from potential sodium plating during cycling. Maintaining a nano-size and consistent morphology of the active material is a crucial parameter for maintaining a well-functioning cell upon cycling. In this work we applied Anomalous Small Angle X-Ray Scattering (ASAXS) for the first time at the Ti K-edge of TiO2 anatase nanoparticles on different cycled composite electrodes in order to have a complete morphological overview of the modifications induced by sodiation and desodiation. This work also demonstrates for the first time that the nanosize of the TiO2 is maintained upon cycling, which is in agreement with the electrochemical stability.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

High Energy Density Lithium Batteries; 2010. https://doi.org/10.1002/9783527630011.CrossRefGoogle Scholar
Blomgren, G. E. The Development and Future of Lithium Ion Batteries. In Journal of the Electrochemical Society; 2017. https://doi.org/10.1149/2.0251701jes.CrossRefGoogle Scholar
Notter, D. A.; Gauch, M.; Widmer, R.; Wäger, P.; Stamp, A.; Zah, R.; Althaus, H. J. Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. Environ. Sci. Technol. 2010. https://doi.org/10.1021/es903729a.CrossRefGoogle ScholarPubMed
Tarascon, J. M. Is Lithium the New Gold? Nature Chemistry. 2010. https://doi.org/10.1038/nchem.680.CrossRefGoogle ScholarPubMed
Deng, J.; Luo, W.-B.; Chou, S.-L.; Liu, H.-K.; Dou, S.-X. Sodium-Ion Batteries: From Academic Research to Practical Commercialization. Adv. Energy Mater. 2018, 8 (4), 1701428. https://doi.org/10.1002/aenm.201701428.CrossRefGoogle Scholar
Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao, Y. Recent Progress in Rechargeable Sodium-Ion Batteries: Toward High-Power Applications. Small 2019, 1805427. https://doi.org/10.1002/smll.201805427.CrossRefGoogle ScholarPubMed
Roberts, S.; Kendrick, E. The Re-Emergence of Sodium Ion Batteries: Testing, Processing, and Manufacturability. Nanotechnol. Sci. Appl. 2018, 11, 2333. https://doi.org/10.2147/NSA.S146365.CrossRefGoogle ScholarPubMed
Bauer, A.; Song, J.; Vail, S.; Pan, W.; Barker, J.; Lu, Y. The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies. Adv. Energy Mater. 2018, 8 (17), 1702869. https://doi.org/10.1002/aenm.201702869.CrossRefGoogle Scholar
Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-Ion Batteries: Present and Future. Chemical Society Reviews. 2017. https://doi.org/10.1039/c6cs00776g.CrossRefGoogle ScholarPubMed
Dou, X.; Hasa, I.; Saurel, D.; Vaalma, C.; Wu, L.; Buchholz, D.; Bresser, D.; Komaba, S.; Passerini, S. Hard Carbons for Sodium-Ion Batteries: Structure, Analysis, Sustainability, and Electrochemistry. Mater. Today 2019, 23, 87104. https://doi.org/10.1016/J.MATTOD.2018.12.040.CrossRefGoogle Scholar
Dou, X.; Hasa, I.; Saurel, D.; Jauregui, M.; Buchholz, D.; Rojo, T.; Passerini, S. Impact of the Acid Treatment on Lignocellulosic Biomass Hard Carbon for Sodium-Ion Battery Anodes. ChemSusChem 2018, 11 (18), 32763285. https://doi.org/10.1002/cssc.201801148.CrossRefGoogle ScholarPubMed
Wahid, M.; Puthusseri, D.; Gawli, Y.; Sharma, N.; Ogale, S. Hard Carbons for Sodium-Ion Battery Anodes: Synthetic Strategies, Material Properties, and Storage Mechanisms. ChemSusChem 2018, 11 (3), 506526. https://doi.org/10.1002/cssc.201701664.CrossRefGoogle ScholarPubMed
Hasa, I.; Dou, X.; Buchholz, D.; Shao-Horn, Y.; Hassoun, J.; Passerini, S.; Scrosati, B. A Sodium-Ion Battery Exploiting Layered Oxide Cathode, Graphite Anode and Glyme-Based Electrolyte. J. Power Sources 2016, 310, 26–31. https://doi.org/10.1016/J.JPOWSOUR.2016.01.082.CrossRefGoogle Scholar
Dou, X.; Buchholz, D.; Weinberger, M.; Diemant, T.; Kaus, M.; Indris, S.; Behm, R. J.; Wohlfahrt-Mehrens, M.; Passerini, , S., Study of the Na Storage Mechanism in Silicon Oxycarbide—Evidence for Reversible Silicon Redox Activity. Small Methods 2019, 3(4), 1800177. https://doi.org/10.1002/smtd.201800177.CrossRefGoogle Scholar
Komaba, S.; Matsuura, Y.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Kuze, S. Redox Reaction of Sn-Polyacrylate Electrodes in Aprotic Na Cell. Electrochem. commun. 2012, 21, 6568. https://doi.org/10.1016/J.ELECOM.2012.05.017.CrossRefGoogle Scholar
Guo, S.; Yi, J.; Sun, Y.; Zhou, H. Recent Advances in Titanium-Based Electrode Materials for Stationary Sodium-Ion Batteries. Energy Environ. Sci. 2016, 9 (10), 29783006. https://doi.org/10.1039/C6EE01807F.CrossRefGoogle Scholar
Zhang, W.; Luo, N.; Huang, S.; Wu, N.-L.; Wei, M. Sulfur-Doped Anatase TiO2 as an Anode for High-Performance Sodium-Ion Batteries. ACS Appl. Energy Mater. 2019, 2 (5), 37913797. https://doi.org/10.1021/acsaem.9b00471.CrossRefGoogle Scholar
Xu, Z.-L.; Lim, K.; Park, K.-Y.; Yoon, G.; Seong, W. M.; Kang, K. Engineering Solid Electrolyte Interphase for Pseudocapacitive Anatase TiO2 Anodes in Sodium-Ion Batteries. Adv. Funct. Mater. 2018, 28 (29), 1802099. https://doi.org/10.1002/adfm.201802099.CrossRefGoogle Scholar
Tahir, M. N.; Oschmann, B.; Buchholz, D.; Dou, X.; Lieberwirth, I.; Panthöfer, M.; Tremel, W.; Zentel, R.; Passerini, S. Extraordinary Performance of Carbon-Coated Anatase TiO 2 as Sodium-Ion Anode. Adv. Energy Mater. 2016, 6 (4), 1501489. https://doi.org/10.1002/aenm.201501489.CrossRefGoogle Scholar
Greco, G.; A. Mazzio, K.; Dou, X.; Gericke, E.; Wendt, R.; Krumrey, M.; Passerini, S. Structural Study of Carbon-Coated TiO2 Anatase Nanoparticles as High-Performance Anode Materials for Na-Ion Batteries. ACS Appl. Energy Mater. 2019, 2 (10), 71427151. https://doi.org/10.1021/acsaem.9b01101.CrossRefGoogle Scholar
Voorhees, P. W. The Theory of Ostwald Ripening. J. Stat. Phys. 1985. https://doi.org/10.1007/BF01017860.CrossRefGoogle Scholar
Greco, G.; A. Mazzio, K.; Dou, X.; Gericke, E.; Wendt, R.; Krumrey, M.; Passerini, S. Structural Study of Carbon-Coated TiO2 Anatase Nanoparticles as High-Performance Anode Materials for Na-Ion Batteries. ACS Appl. Energy Mater. 2019, 0 (ja), null-null. https://doi.org/10.1021/acsaem.9b01101.CrossRefGoogle Scholar
Stuhrmann, H. B. Resonance Scattering in Macromolecular Structure Research. In Characterization of Polymers in the Solid State II: Synchrotron Radiation, X-ray Scattering and Electron Microscopy; Springer, 1985; pp 123163.Google Scholar
Hoell, A.; Tatchev, D.; Haas, S.; Haug, J.; Boesecke, P. On the Determination of Partial Structure Functions in Small-Angle Scattering Exemplified by Al 89 Ni 6 La 5 Alloy. J. Appl. Crystallogr. 2009. https://doi.org/10.1107/S0021889808042453.CrossRefGoogle Scholar
Krumrey, M. Design of a Four-Crystal Monochromator Beamline for Radiometry at BESSY II. J. Synchrotron Radiat. 1998, 5 (1), 69. https://doi.org/10.1107/S0909049597011825.CrossRefGoogle ScholarPubMed
Hoell, A.; Zizak, I.; Bieder, H.; Mokrani, L. German Patent DE 10 2006 029 449. 2007.Google Scholar
Meli, F.; Klein, T.; Buhr, E.; Frase, C. G.; Gleber, G.; Krumrey, M.; Duta, A.; Duta, S.; Korpelainen, V.; Bellotti, R.;, et al. Traceable Size Determination of Nanoparticles, a Comparison among European Metrology Institutes. Meas. Sci. Technol. 2012. https://doi.org/10.1088/0957-0233/23/12/125005.CrossRefGoogle Scholar
Breßler, I.; Kohlbrecher, J.; Thünemann, A. F. SASfit: A Tool for Small-Angle Scattering Data Analysis Using a Library of Analytical Expressions. J. Appl. Crystallogr. 2015, 48 (5), 15871598.CrossRefGoogle ScholarPubMed
Haas, S.; Hoell, A.; Wurth, R.; Ruessel, C.; Boesecke, P.; Vainio, U. Analysis of Nanostructure and Nanochemistry by ASAXS: Accessing Phase Composition of Oxyfluoride Glass Ceramics Doped with Er3+/Yb3+. Phys. Rev. B 2010, 81 (18). https://doi.org/10.1103/PhysRevB.81.184207.CrossRefGoogle Scholar
Tran, H. Y.; Greco, G.; Täubert, C.; Wohlfahrt-Mehrens, M.; Haselrieder, W.; Kwade, A. Influence of Electrode Preparation on the Electrochemical Performance of LiNi0.8Co 0.15Al 0.05O2 Composite Electrodes for Lithium-Ion Batteries. J. Power Sources 2012, 210. https://doi.org/10.1016/j.jpowsour.2012.03.017.CrossRefGoogle Scholar
Hoinkis, E. Small-Angle Scattering of Neutrons and x-Rays from Carbons and Graphites. In Chemistry and physics of carbon vol.25; Thrower, P. A., Ed.; Marcel Dekker: New York, 1997; pp 71242.Google Scholar