Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T08:07:56.394Z Has data issue: false hasContentIssue false

Short-route synthesis method of N-doped exfoliated graphite whit catalytic activity for the oxygen reduction reaction.

Published online by Cambridge University Press:  19 October 2020

Daniel Lardizábal-G.*
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV S.C.), Av. Miguel de Cervantes 120. Complejo Industrial Chihuahua. Chihuahua, Chihuahua, México. C.P. 31109 Instituto Tecnológico de Cancún, Av. Kabah Km. 3, Cancún, Quintana Roo, MéxicoC.P. 75000, [email protected], +52 998 8807432 Ext. 1002
I.L. Alonso-Lemus
Affiliation:
CONACyT-Cinvestav. Centro de Investigación y Estudios Avanzados del IPN. Grupo de Sustentabilidad de los Recursos Naturales y Energía. Av. Industria Metalúrgica 1602. Parque Industrial Saltillo-Ramos Arizpe. Coahuila, México. C.P.25900.
L. de la Torre Saenz
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV S.C.), Av. Miguel de Cervantes 120. Complejo Industrial Chihuahua. Chihuahua, Chihuahua, México. C.P. 31109
A. Aguilar-Elguezabal
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV S.C.), Av. Miguel de Cervantes 120. Complejo Industrial Chihuahua. Chihuahua, Chihuahua, México. C.P. 31109
Ysmael Verde-Gómez
Affiliation:
Instituto Tecnológico de Cancún, Av. Kabah Km. 3, Cancún, Quintana Roo, MéxicoC.P. 75000, [email protected], +52 998 8807432 Ext. 1002
Get access

Abstract

We report the synthesis of metal-free nitrogen-doped electrocatalysts obtained from graphite and urea as carbon and nitrogen precursor, respectively. High-energy milling and thermal annealing were carried out to obtain low cost electrocatalysts. Additionally, this method has shorter synthesis times, is environmentally friendly and use high-availability raw materials. A short-route synthesis consisted in the partial exfoliation of graphite by mechanical milling with urea. Afterwards, nitrogen was integrated into the exfoliated graphite lattice by thermal annealing at 500°C. XPS analyses shows up to 1.7 at. % was incorporated to the graphitic lattice. Scanning Electron Microscopy, X-ray diffraction and Raman Spectroscopy were used to analyse the morphology and structural features. The catalytic activity for the oxygen reduction reaction in basic media was evaluated by the rotating disk electrode technique.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, T. S., Kong, L. B., Du, Z. H., Ma, J., & Li, S. (2010). Journal of Alloys and Compounds, 506(2), 777-783.CrossRefGoogle Scholar
Estrada-Guel, I., Lardizábal-Gutiérrez, D., Leyva, C., & Martínez-Sánchez, R. (2011). Microanalysis, 17(S2), 1540-1541CrossRefGoogle Scholar
Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A., Kleinhammes, A., Jia, Y., Ruoff, R. S. (2007). Carbon, 45(7), 1558-1565.CrossRefGoogle Scholar
Jeon, I. Y., Choi, H. J., Jung, S. M., Seo, J. M., Kim, M. J., Dai, L., & Baek, J. B. (2012). Journal of the American Chemical Society, 135(4), 1386-1393.CrossRefGoogle Scholar
Schaber, P. M., Colson, J., Higgins, S., Thielen, D., Anspach, B., & Brauer, J. (2004). Thermochimica acta, 424(1), 131-142.CrossRefGoogle Scholar
Shao, M., Wang, D., Yu, G., Hu, B., Yu, W., & Qian, Y. (2004). Carbon, 42(1), 183-185.CrossRefGoogle Scholar
Yan, Z., & Barron, A. R. (2010). Режим доступа: http://cnx.org/content/m34667/1.2/-29 June.Google Scholar
Cancado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H.. & Pimenta, M. A. (2006). Applied Physics Letters, 88(16), 163106-163106.CrossRefGoogle Scholar
Pan, F., Cao, Z., Zhao, Q., Liang, H., & Zhang, J. (2014). Journal of Power Sources, 272, 8-15.CrossRefGoogle Scholar
Kruk, M., Jaroniec, M., & Bereznitski, Y. (1996). Journal of colloid and interface science, 182(1), 282-288.CrossRefGoogle Scholar
Shao, Y., Zhang, S., Engelhard, M. H., Li, G., Shao, G., Wang, Y., Lin, Y. (2010). Journal of Materials Chemistry, 20(35), 7491-7496.CrossRefGoogle Scholar
Wang, H., Maiyalagan, T., & Wang, X. (2012). ACS Catalysis, 2(5), 781-794.CrossRefGoogle Scholar
Antolini, E. (2016). Renewable and Sustainable Energy Reviews, 58, 34-51.CrossRefGoogle Scholar
Mitani, S., Lee, S. I., Yoon, S. H., Korai, Y., & Mochida, I. (2004). Journal of Power Sources, 133(2), 298-301.CrossRefGoogle Scholar
Waki, K., Wong, R. A., Oktaviano, H. S., Fujio, T., Nagai, T., Kimoto, K., Yamada, K. (2014). Energy & Environmental Science, 7(6), 1950-1958.CrossRefGoogle Scholar