Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T13:29:48.974Z Has data issue: false hasContentIssue false

Sb-rich nanoinclusions in an AlGaAsSb metamaterial

Published online by Cambridge University Press:  29 January 2019

Nikolay A. Bert
Affiliation:
Ioffe Institute, 26 Polytekhnicheskaya ul., Saint Petersburg194021, Russia
Vladimir V. Chaldyshev*
Affiliation:
Ioffe Institute, 26 Polytekhnicheskaya ul., Saint Petersburg194021, Russia
Nikolay A. Cherkashin
Affiliation:
CEMES, CNRS and Université de Toulouse, 29 rue Jeanne Marvig, 31055Toulouse Cedex 4, France
Vladimir N. Nevedomskiy
Affiliation:
Ioffe Institute, 26 Polytekhnicheskaya ul., Saint Petersburg194021, Russia
Valery V. Preobrazhenskii
Affiliation:
Institute of Semiconductor Physics, 13 ac. Lavrentiev ave., Novosibirsk630090, Russia
Michael A. Putyato
Affiliation:
Institute of Semiconductor Physics, 13 ac. Lavrentiev ave., Novosibirsk630090, Russia
Boris R. Semyagin
Affiliation:
Institute of Semiconductor Physics, 13 ac. Lavrentiev ave., Novosibirsk630090, Russia
Vitaliy I. Ushanov
Affiliation:
Ioffe Institute, 26 Polytekhnicheskaya ul., Saint Petersburg194021, Russia CEMES, CNRS and Université de Toulouse, 29 rue Jeanne Marvig, 31055Toulouse Cedex 4, France Institute of Semiconductor Physics, 13 ac. Lavrentiev ave., Novosibirsk630090, Russia
Maria A. Yagovkina
Affiliation:
Ioffe Institute, 26 Polytekhnicheskaya ul., Saint Petersburg194021, Russia
*
Get access

Abstract

We studied the microstructure of Al0.28Ga0.72As0.972Sb0.028 metamaterials containing a developed array of AsSb nanoinclusions. The AlGaAsSb films were grown by low-temperature molecular-beam epitaxy followed by high-temperature annealing at 750°C. The process resulted in an array of self-organized AsSb nanonclusions with an average diameter of 15 nm. The volume filling factor was about 0.003. Using transmission electron microscopy and x-ray diffraction we showed that the nanoinclusions have A7-type rhombohedral atomic structure with the following orientation in the matrix (0003)p || {111}m and [-2110]p || 〈220〉m, where p and m indices indicate the AsSb precipitate and AlGaAsSb matrix, correspondingly. The nanoinclusions appeared to be strongly enriched by antimony (more than 90 atomic %), whereas the Sb content in the AlGaAsSb matrix was 2.8 atomic %. The strong enrichment of the inclusion with Sb resulted from the local thermodynamic equilibrium between the solid AlGaAsSb matrix and AsSb inclusions which became liquid at a formation temperature of 750°C.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Atwater, H.A. and Polman, A., Nat. Mater. 9, 205 (2010).CrossRefGoogle Scholar
Beak‐Hyun, K., Chang‐Hee, C., Jin‐Soo, M., Min‐Ki, K., Tae‐Young, P., Su, K.J., Chisu, B.C., Jongmin, L., and Seong‐Ju, P., Adv. Mater. 20, 3100 (2008).Google Scholar
Melloch, M.R., Mahalingam, K., Otsuka, N., Woodall, J.M., and Warren, A.C., J. Cryst. Growth 111, 39 (1991).CrossRefGoogle Scholar
Kaminska, M., Liliental‐Weber, Z., Weber, E.R., George, T., Kortright, J.B., Smith, F.W., Tsaur, B., and Calawa, A.R., Appl. Phys. Lett. 54, 1881 (1989).CrossRefGoogle Scholar
Bert, N. A., Veinger, A.I., Vilisova, M.D., Goloshchapov, S.I., Ivonin, I. V., Kozyrev, S. V., Kunitsyn, A.E., Lavrent’eva, L.G., Lubyshev, D.I., Preobrazhenskii, V. V., Semyagin, B.R., Tret’yakov, V. V., Chaldyshev, V. V., and Yakubenya, M.P., Phys. Solid State 35, 1289 (1993).Google Scholar
Gupta, S., Frankel, M.Y., Valdmanis, J.A., Whitaker, J.F., Mourou, G.A., Smith, F.W., and Calawa, A.R., Appl. Phys. Lett. 59, 3276 (1991).CrossRefGoogle Scholar
Melloch, M.R., Woodall, J.M., Harmon, E.S., Otsuka, N., Pollak, F.H., Nolte, D.D., Feenstra, R.M., and Lutz, M.A., Annu. Rev. Mater. Sci. 25, 547 (1995).CrossRefGoogle Scholar
Pastor, A.A., V Prokhorova, U., Serdobintsev, P.Y., V Chaldyshev, V., and Yagovkina, M.A., Semiconductors 47, 1137 (2013).CrossRefGoogle Scholar
Ushanov, V.I., V Chaldyshev, V., Il’inskaya, N.D., Lebedeva, N.M., Yagovkina, M.A., V Preobrazhenskii, V., Putyato, M.A., and Semyagin, B.R., Phys. Solid State 56, 1952 (2014).CrossRefGoogle Scholar
Ushanov, V. I., Chaldyshev, V. V., Preobrazhenskii, V. V., Putyato, M. A., and Semyagin, B. R., Semiconductors, 50, 1596 (2016).CrossRefGoogle Scholar
Bert, N.A., V Chaldyshev, V., Suvorova, A.A., V Preobrazhenskii, V., Putyato, M.A., Semyagin, B.R., and Werner, P., Appl. Phys. Lett. 74, 1588 (1999).CrossRefGoogle Scholar
Chaldyshev, V. V., Bert, N.A., Romanov, A.E., Suvorova, A.A., Kolesnikova, A.L., Preobrazhenskii, V. V., Putyato, M.A., Semyagin, B.R., Werner, P., Zakharov, N.D., and Claverie, A., Appl. Phys. Lett. 80, 377 (2002).CrossRefGoogle Scholar
Chaldyshev, V. V., Kolesnikova, A.L., Bert, N.A., and Romanov, A.E., J. Appl. Phys. 97, (2005).CrossRefGoogle Scholar
Chaldyshev, V. V., Bert, N.A., Kolesnikova, A.L., and Romanov, A.E., Phys. Rev. B 79, 233304 (2009).CrossRefGoogle Scholar
Vasyukov, D.A., Baidakova, M. V., Chaldyshev, V. V., Suvorova, A.A., Preobrazhenskii, V. V., Putyato, M.A., and Semyagin, B.R., J. Phys. D. Appl. Phys. 34, A15 (2001).CrossRefGoogle Scholar
Liu, X., Prasad, A., Nishio, J., Weber, E.R., Liliental‐Weber, Z., and Walukiewicz, W., Appl. Phys. Lett. 67, 279 (1995).CrossRefGoogle Scholar
Martin, G.M., Appl. Phys. Lett. 39, 747 (1981).CrossRefGoogle Scholar
Adachi, S., Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors (John Wiley & Sons Ltd., 2009)CrossRefGoogle Scholar
Biryulin, Y.F., Vul’, S.P., Chaldyshev, V. V., and Shmartsev, Y. V., Sov. Phys. Semicond. 17, 65 (1983).Google Scholar
Hÿtch, M.J., Snoeck, E., and Kilaas, R., Ultramicroscopy 74, 131 (1998).CrossRefGoogle Scholar
Cherkashin, N., Reboh, S., Hÿtch, M.J., Claverie, A., V Preobrazhenskii, V., Putyato, M.A., Semyagin, B.R., and V Chaldyshev, V., Appl. Phys. Lett. 102, 173115 (2013).CrossRefGoogle Scholar
Hüe, F., Johnson, C.L., Lartigue-Korinek, S., Wang, G., Buseck, P.R., and Hÿtch, M.J., J. Electron Microsc. (Tokyo). 54, 181 (2005).CrossRefGoogle Scholar
Bert, N.A., Chaldyshev, V. V., Musikhin, Y.G., Suvorova, A.A., Preobrazhenskii, V. V., Putyato, M.A., Semyagin, B.R., and Werner, P., Appl. Phys. Lett. 74, 1442 (1999).CrossRefGoogle Scholar
Chaldyshev, V. V., Bert, N.A., Musikhin, Y.G., Suvorova, A.A., Preobrazhenskii, V. V., Putyato, M.A., Semyagin, B.R., Werner, P., and Gösele, U., Appl. Phys. Lett. 79, 1294 (2001).CrossRefGoogle Scholar
Ansara, I., Chatillon, C., Lukas, H.L., Nishizawa, T., Ohtani, H., Ishida, K., Hillert, M., Sundman, B., Argent, B.B., Watson, A., Chart, T.G., and Anderson, T., Calphad 18, 177 (1994).CrossRefGoogle Scholar
Gödecke, T., Haalboom, T., and Sommer, F., J. Phase Equilibria 19, 572 (1998).CrossRefGoogle Scholar
Claverie, A. and Liliental-Weber, Z., Philos. Mag. A 65, 981 (1992).CrossRefGoogle Scholar
Bert, N.A., Chaldyshev, V.V., Semiconductors, 30, 988 (1996).Google Scholar