No CrossRef data available.
Published online by Cambridge University Press: 02 March 2020
Sarin gas is a dangerous chemical warfare agent (CWA). It is a nerve agent capable of bringing a person to death in about 15 minutes. A lethal concentration of sarin molecules in air is about 30 mg/m3. Experimental research on this gas requires very careful safety protocols for handling and storage. Therefore, theoretical and computational studies on sarin gas are very welcome and might provide important safe guides towards the management of this lethal substance. In this work, we investigated the interactions between sarin, air and nanoporous graphene, using tools of classical molecular dynamics simulations. Aiming to cast some light in the possible sarin selective filtration by graphene, we designed a bipartite simulation box with a porous graphene nanosheet placed at the middle. Sarin and air molecules were initially placed only on one side of the box so as to create an initial pressure towards the passage of both to the other side. The box dimensions were chosen so that the hole in the graphene was the only possible way through which sarin and air molecules can get to the other side of the box. The number of molecules that passed through the hole in graphene was monitored during 10 ns of simulation and the results for different temperatures were compared. The results show that, as far as the size of the holes are small, van der Waals forces between graphene and the molecules play a significant role on keeping sarin near graphene, at room temperature.