Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T12:06:21.388Z Has data issue: false hasContentIssue false

The Role of Photo-Striction in Tailoring the Nano-Scale Phase Changes in Amorphous Selenium Thin Films

Published online by Cambridge University Press:  20 June 2016

S. Gayathri*
Affiliation:
Dept. of Instrumentation & Applied Physics, Indian Institute of Science, Bangalore, KA 560012, India
G. Sreevidya Varma
Affiliation:
Dept. of Instrumentation & Applied Physics, Indian Institute of Science, Bangalore, KA 560012, India
S. Asokan
Affiliation:
Dept. of Instrumentation & Applied Physics, Indian Institute of Science, Bangalore, KA 560012, India Applied Photonics Initiative, Indian Institute of Science, Bangalore, KA 560012, India
*
Get access

Abstract

The photo-structural changes in a 2 μm thick amorphous selenium (a-Se) thin film, thermally evaporated on Si substrate, have been studied by micro-Raman spectrometer with 532 nm laser at different laser power densities (1 to 64 W/mm2) and exposure times (15 – 60 s). In addition, the nanoscale photo-structural changes/photo-thermodynamic phase changes are examined on 90 nm a-Se film coated on SiO2 cladding of the optical Fiber Bragg Grating (FBG) sensor on prolonged exposure to a low power (1 mW/mm2, 10 mW/mm2) 532 nm laser, which is measured by means of photo-striction (light induced strain) in the material.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yannopoulos, S. N., and Trunov, M. L., Phys. Stat. Solidi. B 246, 1773 (2009).CrossRefGoogle Scholar
Shimakawa, K., Kolobov, A., and Elliott, S. R., Adv. Phys. 44, 475588 (1995).CrossRefGoogle Scholar
Popescu, M., J. Optoelectron. Adv. Mater. 7, 2189 (2005).Google Scholar
Sharma, R., Kumar, D., Srinivasan, V., Jain, H., and Adarsh, K. V., Opt. Express 23, 14085 (2015).CrossRefGoogle Scholar
Tikhomirov, V. K., Hertogen, P., Adriaenssens, G. J., Glorieux, C., and Ottenburgs, R., J. Non-cryst. Solids 227, 732 (1998).CrossRefGoogle Scholar
Minaev, V. S., Timoshenkov, S. P., and Kalugin, V. V., J. Optoelectron. Adv. Mat. 7, 1717 (2005).Google Scholar
Varma, G. S., Muthu, D. V. S., Sood, A. K., Asokan, S., J. Non-cryst. Solids 387, 143 (2014).CrossRefGoogle Scholar
Sivakumar, G., Sabapathy, T., Ayiriveetil, A., Kar, A. K., Asokan, S., Proc. SPIE 8769, 87692L (2013).CrossRefGoogle Scholar
Mikla, V. I., and Mikla, V. V., Amorphous Chalcogenides. The past, present and future (Elsevier-Springer series in materials science-145, 2011), p. 37.Google Scholar
Lukacs, R., Veres, M., Shimakawa, K., and Kugler, S., J. Appl. Phys. 107, 073517 (2010).CrossRefGoogle Scholar
Tallman, R. E., Reznik, A., Weinstein, B. A., Baranovskii, S. D., and Rowlands, J. A., Appl. Phys. Lett. 93, 212103 (2008).CrossRefGoogle Scholar
Tallman, R. E., Weinstein, B. A., Reznik, A., Kubota, M., Tanioka, K., and Rowlands, J. A., J. Non-cryst. Solids 354, 4577 (2008).CrossRefGoogle Scholar
Kundys, B., Appl. Phys. Rev. 2, 011301 (2015).CrossRefGoogle Scholar
Othonos, A., Rev. Sci. Instrum. 68, 4309 (1997).CrossRefGoogle Scholar
Shivananju, B. N., Asokan, S., and Misra, A., J. Phys. D: Appl. Phys. 48, 275502 (2015).CrossRefGoogle Scholar
Asao, H., and Tanaka, K., J. Appl. Phys. 102, 043508 (2007).CrossRefGoogle Scholar
Lindberg, G. P., O’Loughlin, T., Gross, N., Reznik, A., Abbaszadeh, S., Karim, K. S., Belev, G., Hunter, D. M., and Weinstein, B. A., Can. J. Phys. 92, 728 (2014).CrossRefGoogle Scholar
Yannopoulos, S. N., Phys. Rev. B 68, 064206 (2003).CrossRefGoogle Scholar
Kolobov, A. V., Oyanagi, H., Tanaka, K., and Tanaka, K., Phys. Rev. B 55, 726 (1997).CrossRefGoogle Scholar