Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T03:16:54.976Z Has data issue: false hasContentIssue false

Role of Cation-Anion Organic Ligands for Optical Properties of Fully Inorganic Perovskite Quantum Dots

Published online by Cambridge University Press:  25 July 2018

Aaron Forde
Affiliation:
Department of Materials and Nanotechnology, North Dakota State University, Fargo ND 58108
Talgat Inerbaev
Affiliation:
L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
Dmitri Kilin*
Affiliation:
Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, USA
*
Get access

Abstract

Application of lead-halide perovskite nanostructures for photovoltaic and light emitting applications depends on fashion of the surface termination. The reasonable choice of surface ligands for perovskite nanostructures prevent formation of trap states and contribute to chemical stability, wide opening of the bandgap, and intensity of absorption and photoluminescence of perovskite nanostructures. This work provides atomistic arguments for dual ligand protocol of surface passivation of fully inorganic perovskite quantum dots with fully organic ligands being a mix of cations (ethyl-ammonium) and anions (acetic) in nearly equal proportions. Computed binding energies of either individual ligands or anion-cation pairs demonstrate high stability in comparison to thermal energy and are concluded to be favourable choice in synthesis of colloidal perovskite quantum dots for light emitting applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX(3), X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett 2015, 15 (6), 3692–6.CrossRefGoogle Scholar
Kilina, S.; Kilin, D.; Tretiak, S., Light-Driven and Phonon-Assisted Dynamics in Organic and Semiconductor Nanostructures. Chem Rev 2015, 115 (12), 5929–78.CrossRefGoogle ScholarPubMed
Sham, W. K. L. J., Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review 1965, 140 (4A), 11331138.Google Scholar
Hohenberg, P.; Kohn, W., Inhomogeneous Electron Gas. Physical Review B 1964, 136 (3B), B864B871.CrossRefGoogle Scholar
Kresse, G.; Furthmuller, J., Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B 1996, 54 (16), 1116911186.CrossRefGoogle ScholarPubMed
Kresse, G.; Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 1996, 6 (1), 1550.CrossRefGoogle Scholar
Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized Gradient Approximation Made Simple. Physical Review Letters 1996, 77 (18), 38653868.CrossRefGoogle ScholarPubMed
Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 1999, 59 (3), 17581775.CrossRefGoogle Scholar
Junkman, D.; Han, Y.; Vogel, D. J.; D., K., Ab Initio Analysis of Charge Carrier Dynamics in Organic-Inorganic Lead Halide Perovskite Solar Cells. Mater. Res. Soc. Symp. Proc. 2015, 1776, DOI: 10.1557/opl.2015.782.CrossRefGoogle Scholar
Zhou, L.; Neukirch, A. J.; Vogel, D. J.; Kilin, D. S.; Pedesseau, L.; Carignano, M. A.; Mohite, A. D.; Even, J.; Katan, C.; Tretiak, S., Density of States Broadening in CH3NH3PbI3 Hybrid Perovskites Understood from ab Initio Molecular Dynamics Simulations. ACS Energy Letters 2018, 3 (4), 787793.CrossRefGoogle Scholar
Vogel, D. J.; Inerbaev, T. M.; Kilin, D. S., Role of Lead Vacancies for Optoelectronic Properties of Lead-Halide Perovskites. The Journal of Physical Chemistry C 2018, 122 (10), 52165226.CrossRefGoogle Scholar
Vogel, D. J.; Kryjevski, A.; Inerbaev, T. M.; Kilin, D. S., Photoinduced Single- and Multiple- Electron Dynamics Processes Enhanced by Quantum Confinement in Lead Halide Perovskite Quantum Dots. The Journal of Physical Chemistry Letters 2017, 8 (13), 30323039.CrossRefGoogle ScholarPubMed
Forde, A.; Kilin, D., Hole Transfer in Dye-Sensitized Cesium Lead Halide Perovskite Photovoltaics: Effect of Interfacial Bonding. The Journal of Physical Chemistry C 2017, 121 (37), 2011320125.CrossRefGoogle Scholar
Neugebauer, J.; Scheffler, M., Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B 1992, 46 (24), 1606716080.CrossRefGoogle Scholar
Makov, G.; Payne, M. C., Periodic boundary conditions in ab initio calculations. Phys. Rev. B 1995, 51 (7), 40144022.CrossRefGoogle ScholarPubMed
Meng, Q. G.; Chen, J. C.; Kilin, D., Proton reduction at surface of transition metal nanocatalysts. Molec. Simulation 2015, 41 (1-3), 134145.CrossRefGoogle Scholar
Brown, S. L.; Hobbie, E. K.; Tretiak, S.; Kilin, D. S., First-Principles Study of Fluorescence in Silver Nanoclusters. The Journal of Physical Chemistry C 2017, 121 (43), 2387523885.CrossRefGoogle Scholar
Kilina, S.; Velizhanin, K. A.; Ivanov, S.; Prezhdo, O. V.; Tretiak, S., Surface Ligands Increase Photoexcitation Relaxation Rates in CdSe Quantum Dots. Acs Nano 2012, 6 (7), 65156524.CrossRefGoogle ScholarPubMed