Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T04:59:54.839Z Has data issue: false hasContentIssue false

Resolving the Nanostructure of Self Organized Thin Films using Corrected Scanning Transmission Electron Microscopy.

Published online by Cambridge University Press:  19 January 2016

Robert D. Boyd*
Affiliation:
Plasma and Coatings Physics Division, IFM-Material Physics, Linköping University, Linköping Sweden.
Viktor Elofsson
Affiliation:
Nanoscale Engineering Division, IFM-Material Physics, Linköping University, Linköping Sweden.
Kostas Sarakinos
Affiliation:
Nanoscale Engineering Division, IFM-Material Physics, Linköping University, Linköping Sweden.
*
Get access

Abstract

Corrected scanning transmission electron microscopy (STEM) was used to characterise a novel thin film displaying a complex three dimensional nanostructure. The film was prepared by plasma deposition in such a way that it self-organises into layers of silver islands (each with typical dimensions of a few nanometres) within an aluminium nitride matrix. Successful application of STEM imaging and subsequent analysis was able to determine critical information about the material structure, namely island size, shape and crystalline orientation and the detection of island – matrix intermixing. Such information is essential in being able to predict the properties of this material and the approach adopted here is applicable to any similarly structured material.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Raut, H.K., Ganesh, V.A., Nair, A.S., and Ramakrishna, S., Energy Environ. Sci. 4, 3779 (2011).CrossRefGoogle Scholar
Eriksson, F., Ghafoor, N., Schäfers, F., Gullikson, E.M., Aouadi, S., Rohde, S., Hultman, L., and Birch, J., Appl. Opt. 47, 4196 (2008).CrossRefGoogle Scholar
Davis, B.L. and Hussein, M.I., Phys. Rev. Lett. 112, 055505 (2014).CrossRefGoogle Scholar
Leach, R.K., Boyd, R., Burke, T., Danzebrink, H.-U., Dirscherl, K., Dziomba, T., Gee, M., Koenders, L., Morazzani, V., Pidduck, A., Roy, D., Unger, W.E.S., and Yacoot, A., Nanotechnology 22, 062001 (2011).CrossRefGoogle Scholar
von Ardenne, M., Z. Für Phys. 109, 553 (1938).CrossRefGoogle Scholar
Howie, A., J. Microsc. 117, 11 (1979).CrossRefGoogle Scholar
Lentzen, M., Jahnen, B., Jia, C.L., Thust, A., Tillmann, K., and Urban, K., Ultramicroscopy 92, 233 (2002).CrossRefGoogle Scholar
Hu, C., Lai, C.-C., Tao, Q., Lu, J., Halim, J., Sun, L., Zhang, J., Yang, J., Anasori, B., Wang, J., Sakka, Y., Hultman, L., Eklund, P., Rosen, J., and Barsoum, M.W., Chem. Commun. 51, 6560 (2015).CrossRefGoogle Scholar
Lattemann, M., Helmersson, U., and Greene, J.E., Thin Solid Films 518, 5978 (2010).Google Scholar
Goris, B., De Backer, A., Van Aert, S., Gómez-Graña, S., Liz-Marzán, L.M., Van Tendeloo, G., and Bals, S., Nano Lett. (2013).Google Scholar
Sarakinos, K. and Magnfält, D., WO/2015/120893 (21 August 2015).Google Scholar
Meli, F., Klein, T., Buhr, E., Frase, C.G., Gleber, G., Krumrey, M., Duta, A., Duta, S., Korpelainen, V., Bellotti, R., Picotto, G.B., Boyd, R.D., and Cuenat, A., Meas. Sci. Technol. 23, 125005 (2012).Google Scholar
Yu, Z., Muller, D.A., and Silcox, J., Ultramicroscopy 108, 494 (2008).Google Scholar
Boyd, R.D., Pilch, I., Garbrecht, M., Halvarsson, M., and Helmersson, U., Mater. Res. Express 1, 025016 (2014).CrossRefGoogle Scholar
Nellist, P.D. and Pennycook, S.J., Science 274, 413 (1996).Google Scholar